混淆矩阵、分类评价指标

混淆矩阵   混淆矩阵基本上就是上表的表示,展示出实际的类别和分类后的得到的结果。(在目标识别中如何表现出背景那一类?) 抽象出来就是下面的列表: 从TP,TN、FN、FP 可以得到几种指标:   1)查准率: 也可以理解为(正样本的)准确率,P = TP/(...

2018-11-26 13:43:07

阅读数 580

评论数 0

集成学习

一、概念 集成学习通过构建多个学习器,并通过某种策略对多个学习器进行组合。 所以集成学习存在两个方面的问题: 1、如何得到若干个学习器 2、通过何种策略将其组合成一个强学习器 二、分类 首先解决问题1:如何得到若干弱分类器? 首先弱分类器分为两类: 第一类:同质          ...

2017-08-16 17:40:27

阅读数 256

评论数 0

lung cancer detection

1、Introduction 我们的模型基于3d卷积,统一了nodule检测和癌症分类。模型输入是已经预处理的3d肺部的扫描,同时输出可能的nodule和肺癌的概率(提交的数据)。 整个的解决方案分为三个步骤:预处理,病灶检测和癌症分类 2、预处理 3、Nodule detection ...

2017-08-16 15:00:07

阅读数 456

评论数 1

mnist整合mobilenet

#coding=utf8 #author by fffupeng #envirnment anaconda python 3.5 windows #这是一个将mnist中的卷积改成mobilenet的思想 import tensorflow as tf from tensorflow.exa...

2017-08-12 17:28:37

阅读数 1178

评论数 0

tensorflow3 mnist2

#coding=utf8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data',one_ho...

2017-08-12 14:10:55

阅读数 251

评论数 0

tensorflow mnist入门

#coding=utf8import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets("MNIST_data\\&quo...

2017-08-11 18:00:17

阅读数 183

评论数 0

tensorflow从变量-loss-optimizer

tensorflow 提供很多api,最低级的api tensorflow Core给你提供完整的编程控制,这时我们应该关注的。高层的api是建立在tensorflow core之上。A high-level API like tf.contrib.learn helps you manage ...

2017-08-11 10:24:48

阅读数 355

评论数 0

canny

边缘检测原理和步骤: 在实际情况中理想的灰度阶跃及其线条边缘图像是很少见到的,同时大多数的传感器件具有低频滤波特性,这样会使得阶跃边缘变为斜坡性边缘,看起来其中的强度变化不是瞬间的,而是跨越了一定的距离。这就使得在边缘检测中首先要进行的工作是滤波。         1)滤波:边缘检测的算法主...

2017-07-05 12:04:38

阅读数 192

评论数 0

hough变换

霍夫变换的目的:检测直线(或者是简单的图形,例如矩形,圆等等) 例如在下图中检测车道:明显这是直线的检测,如果采用canny边缘检测,很明显忽略了直线这个重要的信息。于是不如换一种思维方式。 在直角坐标系中,直线通过y = k * x +b来表示, 实际上确定直线的参数就两个:k和b...

2017-07-04 17:09:34

阅读数 319

评论数 0

caffe 添加Python层

本文在mnist中添加Python层,作为修改,在本文中不仅介绍如何添加层,还会涉及到修改层的一些思路。 首先在train_test_lenet.prototxt中添加MyPythonLayer一层,如下图所示: 该层的主要作用就是将输入加上10,并输出,同事输入输出的维度不变。 接下来就是具...

2017-06-28 12:29:08

阅读数 5241

评论数 2

c++存储区域

2017/06/24 23:14 五大内存分区   在C++中,内存分成5个区,他们分别是堆、栈、自由存储区、全局/静态存储区和常量存储区。 栈,就是那些由编译器在需要的时候分配,在不需要的时候自动清楚的变量的存储区。里面的变量通常是局部变量、函数参数等。 堆,就是那些由new...

2017-06-24 23:18:26

阅读数 179

评论数 0

导数,偏导,方向倒数,梯度

知乎链接 https://www.zhihu.com/question/36301367 导数: 导数不仅仅表示该点切线的斜率,还反应了函数在该点的变化率。 偏导数: 偏导数仅仅是表示某点在x方向的导数和再y轴方向的导数。 这反应了偏导数的局限性,仅仅是多元函数沿着坐标...

2017-06-20 23:34:26

阅读数 7551

评论数 1

直方图均衡化python代码实现

图像灰度变换中一个非常有用的例子就是直方图均衡化。直方图均衡化是指将一幅图像的灰度直方图变平,使变换后的图像中每个灰度值的分布概率都相同。在对图像做进一步处理之前,直方图均衡化通常是对图像灰度值进行归一化的一个非常好的方法,并且可以增强图像的对比度。 在这种情况下,直方图均衡化的变换函数是图像中...

2017-06-19 12:27:23

阅读数 2916

评论数 0

lec6 训练神经网络2

参数的更新: 详见 http://blog.csdn.net/fffupeng/article/details/72771325 SGD:(沿着梯度负方向更新参数) 在上图中x方向的长度远大于其他方向,损失函数在水平方向上比较浅,在垂直方向上比较深。如上图,很明显下降的速度比较慢。 ...

2017-06-18 21:30:57

阅读数 201

评论数 0

lec5 训练神经网络1

训练网络之前必须知道,训练卷积网络需要一定的数据量。 finetuning 采用预训练的方式,然后用自己的数据训练网络的最后几层。 (可以将卷积层作为提取特征的固定网络,我们只需重新训练分类层就可以了,当然如果有一定的数据量可以训练较多的层) 如下图所示: 准备好数据集,网络模型之...

2017-06-18 10:56:08

阅读数 240

评论数 0

lec4 反向传播和神经网络1

神经网络中如何前向和后向计算: 如下图: 反向传播时,使用链式法则,从后向前逐步更新权重。 下图是有激活函数的情况:

2017-06-18 10:51:02

阅读数 136

评论数 0

SSD 安装日志

s1: git clone cd caffe git checkout ssd s2: cp Makefile.config.example Makefile.config make -j8 make py make test -j12 make runtest –j12...

2017-06-17 14:27:09

阅读数 436

评论数 0

tips/tricks in deep neural network

1、数据集的扩增     现在数据集扩增成为训练深度网络的必须步骤 1.1 水平翻转,随机剪裁,颜色抖动(color jittering)(HSV空间中,改变s和v分量) 1.2 fancy pca step1: 计算rgb三个分量的协方差(注意转为一维) ...

2017-06-14 18:22:47

阅读数 196

评论数 0

在线难例挖掘 论文

这篇论文主要就是在faster rcnn上加上了online hard example mining,论文还是比较容易理解的。 首先回顾一下,faster rcnn的mini batch 的生成过程。 在faster rcnn中mini batch设定为2张图片,每张图片生成128个roi...

2017-06-11 15:19:48

阅读数 3715

评论数 1

3 损失函数和优化

为了描述之前建立的线性分类器的分类效果,我们引入的损失函数,顾名思义,损失函数越大误差也就越大。 在下图的任务中,将测试图片猫、车和青蛙输入网络,输出了一系列的数值,如下表。 很显然我们希望图片对应的分类数值越高越好,例如猫的图片对应cat,但是数值只有3.2,还不如对应的car的数值,所...

2017-06-07 20:42:37

阅读数 1559

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭