无监督学习——kmeans

本文深入探讨了无监督学习中的聚类概念,重点介绍了K-means算法的实现过程,包括肘部法则确定K值以及通过平均畸变程度和轮廓系数评估聚类效果。还提供了使用Python的scikit-learn库进行K-means聚类的实践示例。
摘要由CSDN通过智能技术生成
关键词:聚类,K-means,scikit-learn,python

摘要:本文主要介绍聚类、K-means的概念和结果评估,以及使用python进行聚类分析的方法;


  1. 要点总结

    1. 了解无监督学习以及聚类概念;
    2. K-means的实现过程,肘部法则确定超参数K,利用平均畸变程度和轮廓系数评估聚类效果;
  2. 基本概念

    1. 聚类(clustering)
      1. 属于无监督学习,可以找出不带标签数据的相似性的算法;
      2. 概念:将更具相似性的样本归为一类(cluster),同组中的样本比其他租的样本更相似;
      3. 应用:市场调查中对用户分组、社交网络识别社区、推荐系统、寻找相似模式的基因组;
    2. K-means聚类算法
      1. 实现过程
        1. 指定聚类的数量 K
        2. 初始化,指定第 k 个类的重心位置 uk ;(实际中,为避免局部最优解,需要从不同位置开始初始化,取最小成本函数对应的重心位置作为初始化位置)
        3. 遍历每一个元素 xi ,计算该元素到各个类重心 uk 的距离,将该元素划分到距其最近的类;
        4. 计算重新生成类的重心;
        5. 重复3-4,直至各个类的重心位置不再变化(成本函数值的差达到了限定值,或者前后两次迭代的重心位置变化达到了限定值);
      2. 超参数K:表示类的数量,需要人为指定,K-means不能决定要分几个类;
      3. 肘部法则(elbow method): 可用于估计聚类数量;把不同K值的成本
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值