1、收敛函数的性质
定理1:(极限的唯一性)如果数列{xn}收敛,那么它的极限唯一。
定理2:(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。
如果数列{xn}无界,那么数列{xn}一定发散。但是,如果数列{xn}有界,但不能判断数列{xn}一定收敛。
定理3:(收敛函数的保号性)如果limxn趋向于无穷=a,且a>0(或a<0),那么存在正整数N,当n>N时,都有xn>0(或xn<0)。
推论:如果数列xn从某项起有x>=0(或x<=0),且limxn趋向于无穷=a,那么a>=0(或a<=0)。
定理4:(收敛数列与其子数列间的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛,且极限也是a。
2、求函数数列的几种方法
(1)观察函数能否化简,若能化简且代入xo不为0,将xo代进去得极限
(2)若代入xo分母为0,但分子不为0,将函数倒过来,得到倒过来的函数极限为0,则函数极限为无穷大。
(3)若函数的幂较高,则将分子分母同除于最高项幂,得极限。
(4)运用重要极限,将函数配成重要极限的形式。
(5)洛必达法则,求导。
注:limsinx/x趋向于无穷大的极限是0,趋向于0的极限为1。
lim(1+1/x)的X次方=e
3、判断一个函数是否有导数——左右极限存在且相等。