1)无穷级数的收敛:部分和有极限;
2)收敛级数的性质:
A)Un收敛于s,则kUn也收敛于ks:级数的每一项都乘以一个非零常数k,不改变级数的收敛性。
B)级数A,B收敛于a,b,则级数A+B(A-B)收敛于a+b(a-b);两个收敛级数可以逐项相加(相减).
C)在级数中除掉、加上或者改变有限项,不改变级数的收敛性。
D)对于收敛级数A,如果对级数项任意添加括号形成的级数仍然收敛,且和不变;注意:加括号不改收敛性,但去括号则不一定了;
E)如果级数A收敛,则A的一般项趋于0.
3)柯西审敛定理:
级数收敛的充分必要条件是:对任意给定的
ε,总存在正整数N,使得n>N的p项之和的绝对值小于
ε.
4)正项级数的收敛:
A)如果正项级数的部分和有界,则级数收敛;
B)比较审敛定理:An<Bn,如果B收敛,则A收敛,如果A发散,则B发散;
C)比较审敛的极限形式
E)比值审敛法(达郎贝尔判别法):Un+1/Un=p,如果p<1则收敛,p>1 发散,p=1则不定。