中兴面试题:简单的背包问题的两种思路

问题描述:

输入两个整数n 和m,从数列1,2,3.......n 中随意取几个数,
使其和等于 m ,要求将其中所有的可能组合列出来。这是一个简单的背包问题

算法:

有一些分析认为此题有两种思路:递归和非递归。

但是我觉得“是否递归”只是形式上的区别,用来代表两种思路有点牵强。

我认为应该从算法的处理过程来区分:

第一种:检查所有的组合,去掉和不为m的组合。直观地可将算法分成两步①产生所有子集②挑选符合要求的子集

第二种:构造组合,在产生组合的过程中检测组合的合法性,若发现已不可能构造出合法组合,则停止操作。(如组合中已有元素的和已大于m,则不再继续)

打个不太准确的比喻:就像一棵树,第一种是先生成树,再对叶节点(生成的结果)进行挑选。第二种是在生成树的过程中,及时剪掉不合法的枝,只产生合法的叶节点。

 

对于第一种先求子集的思路,算法过程比较清晰,我在这篇博文里谢了三种产生子集的方法http://blog.csdn.net/hgqqtql/article/details/39744051检验挑选的比较简单,不在给出代码了。

 

算法实现:

第二种思路的递归实现:

 

#pragma once
#include<iostream>
using namespace std;

void Out(int flag[], int size)
{
	for (int i = 0; i < size; i++)
		if (flag[i] == 1)
			cout << i + 1 << ' ';
	cout << endl;
}

bool Equal(int flag[], const int size, int sum)
{
	for (int i = 0; i < size; i++)
		if (flag[i] == 1)
			sum = sum - (i + 1);
	if (sum == 0)
		return true;
	return false;
}

void Find(int n, int m, int flag[], const int size, const int sum)
{
	if (n < 1)
	{
		if (Equal(flag, size, sum))
			Out(flag, size);
		return;
	}
	if (m >= n)
	{
		flag[n - 1] = 1;
		Find(n - 1, m - n, flag, size, sum);
		flag[n - 1] = 0;
		Find(n - 1, m, flag, size, sum);
	}
	if (m < n)
		Find(m, m, flag, size, sum);
}

void  main()
{
	int n, m;
	cin >> n >> m;
	int *flag = new int[n];
	cout << "所有可能的组合:" << endl;
	Find(n, m, flag, n, m);
	system("pause");
}

另外,若削减上述递归代码的限制,可以写出第一种思路的递归代码,实际上是递归产生子集的算法的一种变形。这从另一个角度说明,递归与否只是形式,真正的区别是算法的处理过程。代码如下:

#pragma once
#include<iostream>
using namespace std;

void Out(int flag[],int size)
{
	for (int i = 0; i < size; i++)
		if (flag[i]==1)
			cout << i+1 << ' ';
	cout << endl;
}

bool Equal(int flag[],const int size,int sum)
{
	for (int i = 0; i < size; i++)
		if (flag[i] == 1)
			sum = sum-(i + 1);
	if (sum == 0)
		return true;
	return false;
}

void Find(int n, int m,int flag[],const int size,const int sum)
{
	if (n >= 1)
	{
		flag[n - 1] = 1;
		Find(n - 1, m - n, flag,size,sum);
		flag[n - 1] = 0;
		Find(n - 1, m,flag, size,sum);
	}
	else
	{
		if (Equal(flag, size,sum))
			Out(flag, size);
	}

}

void  main()
{
	int n, m;
	cin >> n >> m;
	int *flag = new int[n];
	Find(n, m, flag, n,m);
	system("pause");
}


  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值