introduction to algorithms sorting lesson 2 merge sorting

相对插入排序 归并排序的复杂度可以降到O(nlogn) 

采用divide and conquer思想 将组数分成两组,若设两组数都是已经排好序(从小到大),则可在O(n)时间内合并两个数组为一个数组,并排好序

运用递归方法来实现

merge(data[ ], p, q, r)

Ldata[0……n1]  =  data[p……q]  

Rdata[0……n2] =  data[q+1……r]

将Ldata[ ]     Rdata[ ] 合并为一个组数据(假设两者都排好序)

从p to  r

依次从Ldata 和 Rdata中选择较小者赋值给data 直到两者遍历完

/*******merge sorting******/
#define   sentinel    10000   
void merge_fun(int data[],int p,int q,int r)// to merge  two sorted array
{
   int n1=q-p+1;
   int n2=r-q;
   int i;
   int j;
   int *ldata=(int*)malloc(sizeof(int)*(n1+1)); //malloc memory
   int *rdata=(int*)malloc(sizeof(int)*(n2+1)); //copy  data
   for(i=0;i<n1;i++)
	   ldata[i]=data[p+i];
   for(i=0;i<n2;i++)
       rdata[i]=data[q+1+i];
   ldata[n1]=sentinel;             //the sentinel is to simplify code 
   rdata[n2]=sentinel;
   i=0,j=0;
   for(int k=p;k<=r;k++)    //merge two array
   {
	   if (ldata[i]>rdata[j])  //get min(ldata,rdata)  then  assign it to data[k]
	      data[k]=rdata[j++];
	   else
		  data[k]=ldata[i++];
   }
   free(ldata); //free memory
   free(rdata);
}
//接下来 可以运用递归方法完成合并排序

void merge_sort(int data[],int p,int r) //sorting by recursion method
{  
	int q;
	if (p<r)
	{
		q=(p+r)/2;
		merge_sort(data,p,q); //sort left
		merge_sort(data,q+1,r);//sort right
		merge_fun(data,p,q,r);//merge left and right
	}
}

效率分析:

根据递归分析法     T(n)= c    n=1;

                                 T(n) = 2T(n/2)  +c*n   n>1;

其中c*n 是merge_fun函数的时间复杂度 这是最基本操作  即为O(n)

取对数可得  T(n) =  nlogn  

值得注意的是merge_fun函数中 sentinel 变量只是为了简化合并部分的代码 别无它用,其取值可以看出无穷大 此处设为10000,若在增加几行代码 则

可以去除sentinel




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值