Description
Solution
将题目看做两个子问题:
- 加密
按位计算每一位的贡献即可
- 不加密
有个比较妙的方法,参考:https://www.cnblogs.com/TSHugh/p/8476934.html
我们先假设所有数都找到了他能找到的最好的匹配(就是异或后为二进制最高位与n-1相等的最大数)并且算出其异或后的总和,然后我们按位贪心,带着所有的数(一开始我们假设所有的数是小于等于二进制最高位与n-1相等的最大数的所有数)从高位走向低位,每走一步,如果这一位是0,就会导致一半的数在这一位不能是1,减去这一半的数在这一位上的贡献,如果这一位是1,就意味着一半的数往后一定会全部是1,我们把这一半数从我们带着的数中减去,另一半待定(留下).
洛谷上被卡精度了啊,啊啊啊
但是正确性应该没有问题吧。。。我这么穷当然没有bzoj权限号啊
Source
/************************************************
* Au: Hany01
* Date: Feb 27th, 2018
* Prob: BZOJ3652
* Email: hany01@foxmail.com
************************************************/
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
#define rep(i, j) for (register int i = 0, i##_end_ = (j); i < i##_end_; ++ i)
#define For(i, j, k) for (register int i = (j), i##_end_ = (k); i <= i##_end_; ++ i)
#define Fordown(i, j, k) for (register int i = (j), i##_end_ = (k); i >= i##_end_; -- i)
#define Set(a, b) memset(a, b, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define fir first
#define sec second
#define pb(a) push_back(a)
#define mp(a, b) make_pair(a, b)
#define ALL(a) (a).begin(), (a).end()
#define SZ(a) ((int)(a).size())
#define INF (0x3f3f3f3f)
#define INF1 (2139062143)
#define Mod (1000000007)
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define y1 wozenmezhemecaia
template <typename T> inline bool chkmax(T &a, T b) { return a < b ? a = b, 1 : 0; }
template <typename T> inline bool chkmin(T &a, T b) { return b < a ? a = b, 1 : 0; }
inline void File()
{
#ifdef hany01
freopen("bzoj3652.in", "r", stdin);
freopen("bzoj3652.out", "w", stdout);
#endif
}
LL n, Pow2[65];
long double p;
int cnt, a[65];
inline long double encrypted()
{
LL t = 0, p1, p2;
long double Ans = 0;
Fordown(i, cnt, 1) {
p1 = Pow2[i - 1] * t;
if (a[i]) p1 += (n & (Pow2[i - 1] - 1)) + 1;
p2 = (n + 1) - p1;
Ans += (long double)p1 * p2 * 2. * Pow2[i - 1];
t = (t << 1) + a[i];
}
return Ans;
}
inline long double unencrypted()
{
LL t = Pow2[cnt];
long double Ans = (long double)(n + 1) * 1. * (Pow2[cnt] - 1);
Fordown(i, cnt, 1)
if (a[i] & 1) t >>= 1; else Ans -= (long double)(t >> 1) * Pow2[i - 1];
return Ans;
}
int main()
{
File();
scanf("%lld", &n), scanf("%Lf", &p);
LL nn = -- n;
long double Ans1, Ans2;
while (nn) a[++ cnt] = nn & 1, nn >>= 1;
Pow2[0] = 1;
For(i, 1, cnt) Pow2[i] = Pow2[i - 1] << 1;
Ans1 = encrypted() / (n + 1) / (n + 1);
Ans2 = unencrypted() / (n + 1);
printf("%.10Lf\n", Ans2 * p + Ans1 * (1 - p));
return 0;
}
//共眠一舸听秋雨,小簟轻衾各自寒。
// -- 朱彝尊《桂殿秋·思往事》