【BZOJ4945】【UOJ317】【NOI2017】游戏(2-SAT)

21 篇文章 0 订阅
17 篇文章 0 订阅

Description

还是uoj的题面美观

Solution

考虑枚举每一个x具体代表的是a,b,c中的哪个。
现在的问题是如何判断一个地图方案可行。
这显然是一个2-SAT。
如果不会2-SAT,这里推荐天天踩我的zjp_shadow的博客
对于每一个限制:
1. hi=Si h i = S i ,可以直接忽略这个限制。
2. hiSi,hj=Sj h i ≠ S i , h j = S j ,也就是我们不能选择 hi h i ,那么就从 hi h i ¬hi ¬ h i 连边
3. 否则我们就从 hi h i hj h j 连边,同时其逆否命题也要连边。

有一个优化:每个x只需枚举ab即可,因为ab涵盖了c的情况。
时间复杂度 O(2d(n+m)) O ( 2 d ( n + m ) )

Code

/**************************************
 * Au: Hany01
 * Prob: [UOJ317][BZOJ4945][NOI2017] 游戏
 * Date: Apr 5th, 2018
 * Email: hany01@foxmail.com
**************************************/

#include<bits/stdc++.h>

using namespace std;

typedef long long LL;
typedef pair<int, int> PII;
typedef vector<int> VI;
#define File(a) freopen(a".in", "r", stdin), freopen(a".out", "w", stdout)
#define rep(i, j) for (register int i = 0, i##_end_ = j; i < i##_end_; ++ i)
#define For(i, j ,k) for (register int i = (j), i##_end_ = (k); i <= i##_end_; ++ i)
#define Fordown(i, j, k) for (register int i = (j), i##_end_ = (k); i >= i##_end_; -- i)
#define Set(a, b) memset(a, b, sizeof(a))
#define SZ(a) ((int)(a.size()))
#define ALL(a) a.begin(), a.end()
#define pb(a) push_back(a)
#define mp(a, b) make_pair(a, b)
#define INF (0x3f3f3f3f)
#define INF1 (2139062143)
#define Mod (1000000007)
#define y1 wozenmezhemecaia 
#ifdef hany01
#define debug(...) fprintf(stderr, __VA_ARGS__)
#else
#define debug(...)
#endif

template<typename T> inline bool chkmax(T &a, T b) { return a < b ? a = b, 1 : 0; }
template<typename T> inline bool chkmin(T &a, T b) { return b < a ? a = b, 1 : 0; }

inline int read() {
    register char c_; register int _, __;
    for (_ = 0, __ = 1, c_ = getchar(); !isdigit(c_); c_ = getchar()) if (c_ == '-')  __ = -1;
    for ( ; isdigit(c_); c_ = getchar()) _ = (_ << 1) + (_ << 3) + (c_ ^ 48);
    return _ * __;
}

const int maxn = 50005, maxm = 200005, maxk = 100005, maxv = 100005;

struct Limit { int i, hi, j, hj; }p[maxk];

int n, m, S[maxn], dfn[maxv], low[maxv], beg[maxv], nex[maxm], v[maxm], e, tim, mp[maxv], id[maxn][3], d, tot, isfound, stk[maxv], sccs, co[maxv], isin[maxv], top, pos[maxn], cnt;

inline void add(int uu, int vv) { v[++ e] = vv, nex[e] = beg[uu], beg[uu] = e; }

void tarjan(int u)
{
    dfn[u] = low[u] = ++ tim, stk[++ top] = u, isin[u] = 1;
    for (register int i = beg[u]; i; i = nex[i])
        if (!dfn[v[i]]) tarjan(v[i]), chkmin(low[u], low[v[i]]);
        else if (isin[v[i]]) chkmin(low[u], dfn[v[i]]);
    if (dfn[u] == low[u]) {
        ++ sccs;
        do co[stk[top]] = sccs, isin[stk[top]] = 0; while (stk[top --] != u);
    }
}

#define ano(a, b) (3 - (a) - (b))
inline void check()
{
    //Init
    e = tim = tot = 0, Set(beg, 0), Set(dfn, 0);
    For(i, 1, n) rep(j, 3) if (S[i] != j)
        id[i][j] = ++ tot, mp[tot] = j;

    //Build the 2-SAT graph
    For(i, 1, m) if (p[i].hi != S[p[i].i]) {
        if (p[i].hj != S[p[i].j])
            add(id[p[i].i][p[i].hi], id[p[i].j][p[i].hj]),
            add(id[p[i].j][ano(p[i].hj, S[p[i].j])], id[p[i].i][ano(p[i].hi, S[p[i].i])]);
        else add(id[p[i].i][p[i].hi], id[p[i].i][ano(p[i].hi, S[p[i].i])]);
    }

    //Get the SCCs by algorithm Tarjan
    For(i, 1, tot) if (!dfn[i]) tarjan(i);

    //Judge if it is legal
    rep(i, n) if (co[i << 1 | 1] == co[(i + 1) << 1]) return ;
    isfound = 1;

    //Print
    For(i, 1, n)
        if (co[(i - 1) << 1 | 1] < co[i << 1]) putchar(mp[(i - 1) << 1 | 1] + 65);
        else putchar(mp[i << 1] + 65);
    putchar('\n');
}

void dfs(int cur)
{
    if (clock() * 1.0 / CLOCKS_PER_SEC > 0.9) { puts("-1"); exit(0); }
    if (cur > cnt) { check(); return ; }
    S[pos[cur]] = 0, dfs(cur + 1);
    if (isfound) return ;
    S[pos[cur]] = 1, dfs(cur + 1);
}

int main()
{
#ifdef hany01
    File("uoj317");
#endif

    static char c, ss[maxn];

    n = read(), d = read(), scanf("%s", ss + 1), m = read();
    For(i, 1, m)
        p[i].i = read(), scanf("%c", &c), p[i].hi = c - 65,
        p[i].j = read(), scanf("%c", &c), p[i].hj = c - 65;

    For(i, 1, n) {
        S[i] = ss[i] - 97;
        if (S[i] > 2) S[i] = 3, pos[++ cnt] = i;
    }

    dfs(1);
    if (!isfound) puts("-1");

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值