Description
初始时滑冰俱乐部有1到n号的溜冰鞋各k双。已知x号脚的人可以穿x到x+d的溜冰鞋。 有m次操作,每次包含两个数ri,xi代表来了xi个ri号脚的人。xi为负,则代表走了这么多人。 对于每次操作,输出溜冰鞋是否足够。
Solution
根据Hall定理,溜冰鞋足够当且近当:对于人的每个子集
S′
S
′
,他们可以穿的对应的溜冰鞋的集合
Γ(S′)
Γ
(
S
′
)
,都有
|S′|≤|Γ(S′)|
|
S
′
|
≤
|
Γ
(
S
′
)
|
。
直接枚举显然是指数级别的。我们发现其实只需要枚举每一个区间即可:因为这个题目的特殊性,我们选取
S
S
中的一段连续区间,那么对应的
Γ(S′)
Γ
(
S
′
)
也是连续的,所以我们对于不是连续区间的子集,如果将其划分成连续区间后满足
|S′|≤|Γ(S′)|
|
S
′
|
≤
|
Γ
(
S
′
)
|
,那么不连续区间本身肯定也满足
|S′|≤|Γ(S′)|
|
S
′
|
≤
|
Γ
(
S
′
)
|
。
所以问题转化成询问对于
∀l,r(l≤r)
∀
l
,
r
(
l
≤
r
)
是否都满足:
整理得:
用线段树维护最长子段和即可。
Code
/************************************************
* Au: Hany01
* Date: Jul 25th, 2018
* Prob: [BZOJ1135][POI2009] Lyz
* Email: hany01@foxmail.com
* Inst: Yali High School
************************************************/
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
#define rep(i, j) for (register int i = 0, i##_end_ = (j); i < i##_end_; ++ i)
#define For(i, j, k) for (register int i = (j), i##_end_ = (k); i <= i##_end_; ++ i)
#define Fordown(i, j, k) for (register int i = (j), i##_end_ = (k); i >= i##_end_; -- i)
#define Set(a, b) memset(a, b, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define x first
#define y second
#define pb(a) push_back(a)
#define mp(a, b) make_pair(a, b)
#define SZ(a) ((int)(a).size())
#define INF (0x3f3f3f3f)
#define INF1 (2139062143)
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define y1 wozenmezhemecaia
template <typename T> inline bool chkmax(T &a, T b) { return a < b ? a = b, 1 : 0; }
template <typename T> inline bool chkmin(T &a, T b) { return b < a ? a = b, 1 : 0; }
inline int read() {
static int _, __; static char c_;
for (_ = 0, __ = 1, c_ = getchar(); c_ < '0' || c_ > '9'; c_ = getchar()) if (c_ == '-') __ = -1;
for ( ; c_ >= '0' && c_ <= '9'; c_ = getchar()) _ = (_ << 1) + (_ << 3) + (c_ ^ 48);
return _ * __;
}
const int maxn = 5e5 + 5;
int k;
struct SegmentTree
{
LL sum[maxn << 2], lv[maxn << 2], rv[maxn << 2], val[maxn << 2];
#define mid ((l + r) >> 1)
#define lc (t << 1)
#define rc (lc | 1)
inline void maintain(int t) {
sum[t] = sum[lc] + sum[rc], lv[t] = max(lv[lc], sum[lc] + lv[rc]), rv[t] = max(rv[rc], sum[rc] + rv[lc]);
val[t] = max(max(rv[lc] + lv[rc], val[lc]), val[rc]);
}
void build(int t, int l, int r) {
if (l == r) sum[t] = val[t] = -k;
else build(lc, l, mid), build(rc, mid + 1, r), maintain(t);
}
void update(int t, int l, int r, int x, int dt)
{
if (l == r) {
sum[t] += dt, val[t] += dt;
lv[t] = rv[t] = sum[t] < 0 ? 0 : sum[t];
return;
}
if (x <= mid) update(lc, l, mid, x, dt);
if (x > mid) update(rc, mid + 1, r, x, dt);
maintain(t);
}
#undef mid
}ST;
int main()
{
#ifdef hany01
freopen("bzoj1135.in", "r", stdin);
freopen("bzoj1135.out", "w", stdout);
#endif
static int n, m, x, dt;
static LL d;
n = read(), m = read(), k = read(), d = read(), ST.build(1, 1, n), d *= k;
while (m --)
x = read(), dt = read(), ST.update(1, 1, n, x, dt), puts(ST.val[1] <= d ? "TAK" : "NIE");
return 0;
}
//水际轻烟,沙边微雨。荷花芳草垂杨渡。
// -- 刘将孙《踏莎行·闲游》