【BZOJ3625】【CF438E】【多项式开方模板题】小朋友和二叉树

31 篇文章 0 订阅
23 篇文章 0 订阅

Description

我们的小朋友很喜欢计算机科学,而且尤其喜欢二叉树。 考虑一个含有n个互异正整数的序列c[1],c[2],…,c[n]。如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合{c[1],c[2],…,c[n]}中,我们的小朋友就会将其称作神犇的。并且他认为,一棵带点权的树的权值,是其所有顶点权值的总和。 给出一个整数m,你能对于任意的s(1<=s<=m)计算出权值为s的神犇二叉树的个数吗?请参照样例以更好的理解什么样的两棵二叉树会被视为不同的。 我们只需要知道答案关于998244353取模后的值。


Solution

我们设答案的生成函数为 f ( i ) f(i) f(i),设 g ( i ) g(i) g(i)是一个表示权值 i i i是否存在的0/1序列。
易得:
f ( i ) = g ( i ) f 2 ( i ) + 1 f ( i ) = 1 − 1 − 4 g ( i ) 2 g ( i ) = 2 1 + 1 − 4 g ( i ) f(i)=g(i)f^2(i) + 1 \\ \begin{aligned} f(i)=\frac{1- \sqrt{1-4g(i)}}{2g(i)} \\ =\frac{2}{1+\sqrt{1-4g(i)}} \end{aligned} f(i)=g(i)f2(i)+1f(i)=2g(i)114g(i) =1+14g(i) 2

多项式开方后求逆即可。

关于多项式开方:对于 G 2 ≡ F ( m o d x n ) G^2\equiv F \pmod {x^n} G2F(modxn),我们已经算出了 G n / 2 2 ≡ F ( m o d x n / 2 ) G_{n/2}^2\equiv F\pmod{x^{n/2}} Gn/22F(modxn/2),求 G n G_n Gn
G n / 2 2 ≡ G n 2 ( m o d x n / 2 ) G_{n/2}^2\equiv G_n^2\pmod{x^{n/2}} Gn/22Gn2(modxn/2)
( G n − G n / 2 ) ( G n + G n / 2 ) ≡ 0 ( m o d x n / 2 ) (G_n-G_{n/2})(G_n+G_{n/2})\equiv 0 \pmod {x^{n/2}} (GnGn/2)(Gn+Gn/2)0(modxn/2)
由于开方结果肯定有两个,我们可以任选一个,比如 G n − G n / 2 = 0 G_n-G_{n/2}=0 GnGn/2=0
那么有 ( G n − G n / 2 ) 2 ≡ 0 ( m o d x n ) (G_n-G_{n/2})^2\equiv 0 \pmod {x^n} (GnGn/2)20(modxn)
化简: G n = G n / 2 2 + F 2 G n / 2 G_n=\frac{G_{n/2}^2+F}{2G_{n/2}} Gn=2Gn/2Gn/22+F,多项式求逆即可。
主定理证明多项式求逆是 O ( n log ⁡ n ) O(n\log n) O(nlogn)的,然后开方用了多项式求逆还是 O ( n log ⁡ n ) O(n\log n) O(nlogn)的,感觉常数很资瓷啊。


Code

/**************************************
 * Au: Hany01
 * Prob: [BZOJ3625][CF438E] 小朋友和二叉树
 * Date: Jul 27th, 2018
 * Email: hany01@foxmail.com
**************************************/

#include<bits/stdc++.h>

using namespace std;

typedef long long LL;
typedef pair<int, int> PII;
typedef vector<int> VI;
#define File(a) freopen(a".in", "r", stdin), freopen(a".out", "w", stdout)
#define rep(i, j) for (register int i = 0, i##_end_ = j; i < i##_end_; ++ i)
#define For(i, j ,k) for (register int i = (j), i##_end_ = (k); i <= i##_end_; ++ i)
#define Fordown(i, j, k) for (register int i = (j), i##_end_ = (k); i >= i##_end_; -- i)
#define Set(a, b) memset(a, b, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define SZ(a) ((int)(a.size()))
#define ALL(a) a.begin(), a.end()
#define pb(a) push_back(a)
#define mp(a, b) make_pair(a, b)
#define x first
#define y second
#define INF (0x3f3f3f3f)
#define INF1 (2139062143)
#define y1 wozenmezhemecaia 
#ifdef hany01
#define debug(...) fprintf(stderr, __VA_ARGS__)
#else
#define debug(...)
#endif

template<typename T> inline bool chkmax(T &a, T b) { return a < b ? a = b, 1 : 0; }
template<typename T> inline bool chkmin(T &a, T b) { return b < a ? a = b, 1 : 0; }

inline int read() {
    register char c_; register int _, __;
    for (_ = 0, __ = 1, c_ = getchar(); !isdigit(c_); c_ = getchar()) if (c_ == '-')  __ = -1;
    for ( ; isdigit(c_); c_ = getchar()) _ = (_ << 1) + (_ << 3) + (c_ ^ 48);
    return _ * __;
}

const int maxn = 1e5 + 5, MOD = 998244353, g0 = 3;

int powg[maxn << 2], ipowg[maxn << 2], ig0, rev[maxn << 2];

inline int ad(int x, int y) { if ((x += y) >= MOD) return x - MOD; return x; }
inline LL Pow(LL a, LL b) {
    static LL Ans;
    for (Ans = 1, a %= MOD; b; b >>= 1, (a *= a) %= MOD) if (b & 1) (Ans *= a) %= MOD;
    return Ans;
}

inline void Init(int N) {
    ig0 = Pow(g0, MOD - 2);
    for (register int i = 1; i <= N; i <<= 1)
        powg[i] = Pow(g0, (MOD - 1) / i), ipowg[i] = Pow(ig0, (MOD - 1) / i);
}

inline void getrev(int N) {
    static int cnt, n;
    for (cnt = 0, n = 1; n < N; n <<= 1, ++ cnt);
    rep(i, N) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (cnt - 1));
}

inline void NTT(int* a, int n, int ty) {
    rep(i, n) if (i < rev[i]) swap(a[i], a[rev[i]]);
    for (register int i = 2, p = 1; i <= n; p = i, i <<= 1) {
        register int w0 = ty > 0 ? powg[i] : ipowg[i];
        for (register int j = 0; j < n; j += i) {
            register int w = 1;
            rep(k, p) {
                register int x = a[j + k], y = (LL)a[j + k + p] * w % MOD;
                a[j + k] = ad(x, y), a[j + k + p] = ad(x, MOD - y),
                w = (LL)w * w0 % MOD;
            }
        }
    }
    if (ty < 1) {
        register int invn = Pow(n, MOD - 2);
        rep(i, n) a[i] = (LL)a[i] * invn % MOD;
    }
}

namespace Inv
{
    static int A[maxn << 2], B[maxn << 2], a[maxn << 2];
    void Inv_(int* b, int n) {
        if (n == 1) { b[0] = Pow(a[0], MOD - 2); return; }
        Inv_(b, n >> 1);
        rep(i, n) A[i] = a[i], B[i] = b[i];
        For(i, n, n << 1) A[i] = B[i] = 0;
        getrev(n << 1), NTT(A, n << 1, 1), NTT(B, n << 1, 1);
        rep(i, n << 1) A[i] = (LL)A[i] * B[i] % MOD * B[i] % MOD;
        NTT(A, n << 1, -1);
        rep(i, n) b[i] = ad(ad(b[i], b[i]), MOD - A[i]);
    }
    void Inv(int* x, int* y, int n) {
        rep(i, n) a[i] = x[i], y[i] = 0;
        Inv_(y, n);
    }
}

namespace Sqrt
{
    static int A[maxn << 2], B[maxn << 2], a[maxn << 2];
    void Sqrt_(int* b, int n) {
        if (n == 1) { b[0] = 1; return; } //!!!!
        Sqrt_(b, n >> 1);
        rep(i, n) A[i] = b[i];
        For(i, n, n << 1) A[i] = 0;
        getrev(n << 1), NTT(A, n << 1, 1);
        rep(i, n << 1) A[i] = (LL)A[i] * A[i] % MOD;
        NTT(A, n << 1, -1);
        rep(i, n) A[i] = ad(A[i], a[i]), B[i] = ad(b[i], b[i]);
        Inv:: Inv(B, B, n);
        getrev(n << 1), NTT(A, n << 1, 1), NTT(B, n << 1, 1);
        rep(i, n << 1) A[i] = (LL)A[i] * B[i] % MOD;
        NTT(A, n << 1, -1); rep(i, n) b[i] = A[i];
    }
    void Sqrt(int* x, int* y, int n) {
        rep(i, n) a[i] = x[i], y[i] = 0;
        Sqrt_(y, n);
    }
}

int main()
{
#ifdef hany01
    File("bzoj3625");
#endif

    static int n, m, N, g[maxn << 2], t;

    m = read(), n = read();
    for (N = 1; N <= n; N <<= 1);
    Init(N << 1);
    while (m --) if ((t = read()) < N) g[t] = 1;

    rep(i, N) g[i] = ((LL)(MOD - g[i]) << 2) % MOD;
    ++ g[0], Sqrt:: Sqrt(g, g, N), ++ g[0];
    Inv:: Inv(g, g, N);
    For(i, 1, n) printf("%d\n", ad(g[i], g[i]));

    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值