Description
给定一个⻓为
n
n
的数列 ,你可以多次进行如下操作:
选定 个不同的下标
i1,i2…ik
i
1
,
i
2
…
i
k
,然后将
i1
i
1
移动到下标
i2
i
2
处,将
i2
i
2
移动到下标
i3
i
3
处, ……
你的任务是用操作次数最少的方法将整个数列排序成不降的。
注意,所有操作中选定下标的个数总和不得超过
s
s
。如果无解,输出 -1。
Solution
我们先假设数列元素互不相等,对于每一个元素向它应该处于的位置连一条边,这样就形成了很多个环。
对于很多个环,可以用两次操作来搞:
对于,我们先
(i11…i21…)
(
i
11
…
i
21
…
)
再
(im1,i(m−1)1,…,i21,i11)
(
i
m
1
,
i
(
m
−
1
)
1
,
…
,
i
21
,
i
11
)
。
但是这样会增加总个数,所以我们要通过调整合并环的个数使得满足个数不超过
s
s
<script type="math/tex" id="MathJax-Element-485">s</script>的情况下操作数最小。
如果有相同元素,如果它们再不同的环中,那么我们交换它们的出边即可将两个环合并成一个。(自己可以在纸上画一画)
注意实现的时候有一些细节。
Code
/************************************************
* Au: Hany01
* Date: Aug 26th, 2018
* Prob: LOJ2818 CF1012E EJOI2018
* Email: hany01dxx@gmail.com & hany01@foxmail.com
* Inst: Yali High School
************************************************/
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef long double LD;
typedef pair<int, int> PII;
#define rep(i, j) for (register int i = 0, i##_end_ = (j); i < i##_end_; ++ i)
#define For(i, j, k) for (register int i = (j), i##_end_ = (k); i <= i##_end_; ++ i)
#define Fordown(i, j, k) for (register int i = (j), i##_end_ = (k); i >= i##_end_; -- i)
#define Set(a, b) memset(a, b, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define x first
#define y second
#define pb(a) push_back(a)
#define mp(a, b) make_pair(a, b)
#define SZ(a) ((int)(a).size())
#define ALL(a) a.begin(), a.end()
#define INF (0x3f3f3f3f)
#define INF1 (2139062143)
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define y1 wozenmezhemecaia
template <typename T> inline bool chkmax(T &a, T b) { return a < b ? a = b, 1 : 0; }
template <typename T> inline bool chkmin(T &a, T b) { return b < a ? a = b, 1 : 0; }
inline int read() {
static int _, __; static char c_;
for (_ = 0, __ = 1, c_ = getchar(); c_ < '0' || c_ > '9'; c_ = getchar()) if (c_ == '-') __ = -1;
for ( ; c_ >= '0' && c_ <= '9'; c_ = getchar()) _ = (_ << 1) + (_ << 3) + (c_ ^ 48);
return _ * __;
}
const int maxn = 2e5 + 5;
int n, s, a[maxn], b[maxn], fa[maxn], fu, fv, p[maxn], stk[maxn], top, stk1[maxn], top1, vis[maxn], v[maxn], bk, tot, mgcir, num, las;
map<int, int> pos;
int find(int x) { return x == fa[x] ? x : fa[x] = find(fa[x]); }
inline void uni(int u, int v) { if ((u = find(u)) != (v = find(v))) fa[u] = v; }
int main()
{
#ifdef hany01
freopen("loj2818.in", "r", stdin);
freopen("loj2818.out", "w", stdout);
#endif
n = read(), s = read();
For(i, 1, n) a[i] = b[i] = read();
sort(b + 1, b + 1 + n);
Fordown(i, n, 1) pos[b[i]] = i;
For(i, 1, n) fa[i] = i;
For(i, 1, n) if (a[i] != b[i]) {
while (a[pos[a[i]]] == b[pos[a[i]]]) ++ pos[a[i]];
uni(i, pos[a[i]]), p[pos[a[i]]] = i, v[i] = pos[a[i]] ++, ++ tot;
}
if (tot > s) { puts("-1"); return 0; }
For(i, 2, n) if (a[i] != b[i]) {
if (las && b[i] == b[las]) {
if ((fu = find(p[i])) != (fv = find(p[las])))
swap(v[p[i]], v[p[las]]), fa[fu] = fv;
} else las = i;
}
For(i, 1, n) if (!vis[i] && a[i] != b[i]) {
int u = i;
do vis[u] = 1, u = v[u]; while (u != i);
++ num;
}
Set(vis, 0);
if (s == tot || s == tot + 1 || num <= 2) {
printf("%d\n", num);
For(i, 1, n) if (!vis[i] && a[i] != b[i]) {
int u = i; top = 0;
do stk[++ top] = u, vis[u] = 1, u = v[u]; while (u != i);
printf("%d\n", top);
For(j, 1, top) printf("%d ", stk[j]);
putchar('\n');
}
return 0;
}
mgcir = min(s - tot, num), printf("%d\n", 2 + num - mgcir);
For(i, 1, n) if (!vis[i] && a[i] != b[i]) {
int u = i;
do stk[++ top] = u, vis[u] = 1, u = v[u]; while (u != i);
stk1[++ top1] = i;
if (!-- mgcir) { bk = i; break; }
}
printf("%d\n", top);
For(j, 1, top) printf("%d ", stk[j]);
putchar('\n');
printf("%d\n", top1);
Fordown(j, top1, 1) printf("%d ", stk1[j]);
putchar('\n');
For(i, bk + 1, n) if (!vis[i] && a[i] != b[i]) {
int u = i; top = 0;
do stk[++ top] = u, vis[u] = 1, u = v[u]; while (u != i);
printf("%d\n", top);
For(j, 1, top) printf("%d ", stk[j]);
putchar('\n');
}
return 0;
}