物体定位Object Detection中评价标准mAP的简单介绍

首先再回顾一下基础的评价标准三件套(假设一共一百学生,男女各半,检测的时候男生全部检测正确,女生有25人分为男生):

1. 准确率 accuracy:分类对的样本除以总样本个数,这个一般是针对于整个分类任务说的,这里一共分对了男生50人加女生25人也就是分对了75人,acc=0.75

2. 召回率recall,这个是针对某一类来说的,也就是一般说男生的recall,女生的recall,通俗来讲,recall总是偏心于自己这一类,就像孙子的奶奶一样,我孙子好了就行,其他人爱咋咋的,也就是他只管自己负责的这一类有多少被检测出来了,而不管其他类有多少误分成我这一类,比如本例中男生的recall是1,因为男生全部被检测出来了,所以男生的recall就高,女生只有一半被检测出来了,所以她的recall就是0.5

3.精确率precision(蛇皮翻译,和准确率有个naizi区别),这个也是针对某一类来说的,这个相对于recall这个亲奶奶,就是后奶奶了,就会鸡蛋里挑骨头,好不容易有一些分成本类的,她还要挑挑捡捡,看是不是真的本类,也就是代表了被检出的某一类中,真正是该类的样本占的概率,本例中男生的precision是50/75=0.666,女生的precision就是25/25=1啦

顺便再多说一点吧,f1 score这个评价标准,简单的就是recall和precision的平均值,扩展的f1 scaore就是在两者中加一个系数a,来设置recall 和precision的重要性

那么物体定位中的map怎么计算的呢&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值