考点:理解递归调用的本身是压栈出栈的过程
题目描述
输入一颗二叉树的根节点和一个整数,打印出二叉树中结点值的和为输入整数的所有路径。路径定义为从树的根结点开始往下一直到叶结点所经过的结点形成一条路径。(注意: 在返回值的list中,数组长度大的数组靠前)。
分析思路
路径总是从根节点开始,在树的前序、中序、后序遍历中选前序遍历。每访问一个节点,把当前节点添加到路径中保存下来,一直到叶子节点。
具体规律为:用前序遍历的方式访问节点,把该节点添加到路径上,并累加该节点的值(用题目要求值减去该节点值,用于遍历子节点)。若节点为叶子节点,且节点值刚好等于输入值,当前路径符合要求,打印出来。不是子节点,继续遍历。当前节点访问结束,递归函数回到父节点,所以在函数退回之前,需要删除当前路径tmp.pop_back()。
实现代码
public:
vector<vector<int> > FindPath(TreeNode* root,int expectNumber) {
if(root==NULL)
return result;
tmp.push_back(root->val); //把路径入栈
if(expectNumber-root->val==0 && root->left==NULL && root->right==NULL){
result.push_back(tmp); //如果值相等为0,且到达叶子节点,把路径压入result
}
//递归本质在压栈出栈
FindPath(root->left,expectNumber-root->val);
FindPath(root->right,expectNumber-root->val);
tmp.pop_back(); //当前节点访问结束,返回父节点时需删除当前路径
return result;
}
private:
vector<int> tmp;
vector<vector<int>> result;
备注:用vector实现栈来保存路径,push_back()在路径末尾添加路径节点,pop_back()在路径末尾删除节点。