基于机器学习的鸢尾花数据集的三分类算法的实现 C++

一、关于鸢尾花机器学习的四个特征与标注:
基于机器学习的模型构造,鸢尾花的四个特征分别是:花萼的长度、花萼的宽度、花瓣的长度、花瓣的宽度; 实现标注结果:0表示山鸢尾 1表示变色鸢尾 2表示维吉尼亚鸢尾的三分类问题:
在这里插入图片描述
二、关于鸢尾花的数据分析:

  1. 鸢尾花数据集中共有两个文件,训练集.txt与测试集.txt;
  2. 鸢尾花共有三种类别:分别为山鸢尾(Iris-setosa)、变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica)。

三、结果讲解:

在这里插入图片描述
训练集与测试集两个文本中,都分别为5列:以此为:花萼长度、花萼宽度、花瓣长度、花瓣宽度、标注类别。
测试结果:0表示山鸢尾的预测的成功率;1表示变色鸢尾的预测的成功率;2表示维吉尼亚的预测的成功率;最大值为,预测的结果
四、C++的 源代码下载地址为:
https://download.csdn.net/download/hhgao2012/85947905?spm=1001.2014.3001.5503

鸢尾花数据集是一个常用的机器学习示例,它包含了三种不同种类的鸢尾花的测量数据。使用支持向量机(SVM)对这个数据集进行分类,在C++中可以按照以下步骤编写代码: 首先,你需要包含必要的库文件,如`<iostream>`、 `<vector>` SVM相关的库(例如`mlpack` 或 `dlib` 等),如果使用mlpack,需要安装并链接。 ```cpp #include <iostream> #include <mlpack/core.hpp> #include <mlpack/methods/svm/svc.hpp> #include <mlpack/core/data/load.hpp> #include <mlpack/core/data/scaler/principalcomponents.hpp> ``` 然后加载鸢尾花数据集: ```cpp arma::mat data; arma::Row<size_t> labels; mlpack::data::Load("iris.data", data, labels); // 假设数据文件名为"iris.data" ``` 接下来,分割数据集为训练集测试集: ```cpp size_t numInstances = data.n_rows; arma::mat trainData(data.rows(0, numInstances / 2), data.cols()); arma::Row<size_t> trainLabels(labels.subvec(0, numInstances / 2)); arma::mat testData(data.rows(numInstances / 2, numInstances), data.cols()); arma::Row<size_t> testLabels(labels.subvec(numInstances / 2, numInstances)); ``` 接着,对数据进行预处理,这里使用PCA归一化: ```cpp mlpack::preprocessing::PCA pca; pca.Fit(trainData); trainData = pca.Transform(trainData); testData = pca.Transform(testData); ``` 最后,使用SVM进行训练并预测: ```cpp mlpack::regression::SVR<> svm; svm.Train(trainData, arma::conv_to<arma::Col<size_t>>::from(trainLabels)); arma::Row<size_t> predictions; svm.Predict(testData, predictions); ``` 评估分类效果,例如计算准确率: ```cpp double accuracy = arma::accu(predictions == testLabels) / static_cast<double>(testLabels.n_elem); std::cout << "Accuracy: " << accuracy << std::endl; ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

翱翔的小鸟2001

您的鼓励是我最大的动力!!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值