python2.7中,用pandas处理数据时,经常要给dataframe新增一列,最简单的办法就是:
df['newcol']=1000
这样的方法是简单,但是dataframe中新增的一列全是同样的值,如果要把一个序列直接增加到原来的dataframe中呢,就不好弄了。
例如:
df['newcol']=pd.Serials(a)
这时,你会发现新增的列的值全是Nan,和原来的a序列中的值一点关系没有。
怎么办?
经过多次测试,发现只需要添加一个list函数即可:
最终形式:
df['newcol']=list(pd.Serials(a))
甚至你可以直接进行序列计算操作,也就是说,a序列可以直接对b序列进行加减乘除操作。
例如a=[1,2,3] ,b=[2,4,6]
df['newcol']=list(pd.Serials(a)+pd.Serials(b))
最终结果:
df['newcol']=[3,6,9]
具体是在python 2.7.13中测试可用的。