韩语未知名词多阶段半超义标注与连续语音信号基音检测方法
在自然语言处理和语音信号处理领域,韩语未知名词的超义标注以及连续语音信号的基音检测是两个重要的研究方向。下面将详细介绍相关的研究方法和实验结果。
韩语未知名词多阶段半超义标注
随着语义网的发展,需要将原始文本中的非结构化信息转换为结构化的词汇 - 语义资源。超义标注(SST)作为扩展命名实体识别(NER)系统的方法,具有较高的识别性能和广泛的覆盖范围。以往的SST研究可分为有监督和无监督两种方法,但韩语由于其相对灵活的句法结构、缺乏类似WordNet的词库以及自身的世宗名词语义分类系统,需要一种新的超义标注方法。
半超义标注
半超义标注是基于WordNet的英语超义系统的扩展。英语SST系统通常使用26个超义标签,但由于概念数量过少,许多术语失去了多义性特征,难以区分概念。因此,我们从世宗名词语义分类系统中提取了74个半超义标签作为目标标签。具体的超义标签和半超义标签如下表所示:
| 超义标签 | 半超义标签 | 半超义标签数量 |
| — | — | — |
| 物理对象 | 物理自然对象、物理人工制品等 | 4 |
| 组 | 人类组、非人类组 | 2 |
| 地点 | 地面地点、水地点等 | 14 |
| 抽象对象 | 金钱、时间、方法、技能、角色等 | 44 |
| 状态 | 静态状态、行为、事件、现象等 | 5 |
多阶段半超义标注
该方法包括一个形态匹配阶段和两个语义匹配阶段。
- 形态匹配阶段 :这是处理不在半超义标签中的未知词
超级会员免费看
订阅专栏 解锁全文
3423

被折叠的 条评论
为什么被折叠?



