Excel·VBA二维数组组合函数之穷举推理题

看到一个帖子《CSDN-求助一道推理题》,与之前《python穷举暴力破解《2018年刑侦推理题》用python穷举的推理题很类似
在这里插入图片描述

Sub 穷举推理题()
    Dim x&, y&, z&, a, arr, brr, b, i&, j&, c, crr, t&
    x = 2: y = 8: z = 3  '变量题号
    a = [{"A", "B", "C", "D"}]  '答案类型,答案二维数组
    ReDim arr(1 To 10, 1 To UBound(a)), c(1 To UBound(a))  '答案二维数组,共10题
    For i = 1 To UBound(arr)
        For j = 1 To UBound(arr, 2)
            arr(i, j) = a(j)
        Next
    Next
    tm = Timer: brr = combin_arr2d(arr)  '调用函数返回组合,一维嵌套数组
    For Each b In brr
        If (b(2) = "A" And b(5) = "C") Or (b(2) = "B" And b(5) = "D") Or _
            (b(2) = "C" And b(5) = "A") Or (b(2) = "D" And b(5) = "B") Then  '第2题
            If (b(4) = "A" And b(1) = b(5)) Or (b(4) = "B" And b(x) = b(y)) Or _
                (b(4) = "C" And b(x) = b(z)) Or (b(4) = "D" And b(z) = b(y)) Then  '第4题
                If (b(5) = "A" And b(5) = b(8)) Or (b(5) = "B" And b(5) = b(4)) Or _
                    (b(5) = "C" And b(5) = b(9)) Or (b(5) = "D" And b(5) = b(7)) Then  '第5题
                    If (b(6) = "A" And b(2) = b(4) And b(2) = b(8)) Or _
                        (b(6) = "B" And b(1) = b(6) And b(1) = b(8)) Or _
                        (b(6) = "C" And b(3) = b(10) And b(3) = b(8)) Or _
                        (b(6) = "D" And b(5) = b(9) And b(5) = b(8)) Then  '第6题
                        i = Application.Match(b(1), a, 0)
                        If (b(8) = "A" And Abs(Application.Match(b(7), a, 0) - i) <> 1) Or _
                            (b(8) = "B" And Abs(Application.Match(b(5), a, 0) - i) <> 1) Or _
                            (b(8) = "C" And Abs(Application.Match(b(2), a, 0) - i) <> 1) Or _
                            (b(8) = "D" And Abs(Application.Match(b(10), a, 0) - i) <> 1) Then  '第8题
                            If (b(9) = "A" And ((b(1) = b(6)) <> (b(6) = b(5)))) Or _
                                (b(9) = "B" And ((b(1) = b(6)) <> (b(10) = b(5)))) Or _
                                (b(9) = "C" And ((b(1) = b(6)) <> (b(2) = b(5)))) Or _
                                (b(9) = "D" And ((b(1) = b(6)) <> (b(9) = b(5)))) Then  '第9题
                                For j = 1 To UBound(a)  '字符串计数
                                    crr = Split(Join(b, ""), a(j)): c(j) = UBound(crr)
                                Next
                                t = Application.Match(WorksheetFunction.Min(c), c, 0)
                                If (b(7) = "A" And t = 3) Or (b(7) = "B" And t = 2) Or _
                                    (b(7) = "C" And t = 1) Or (b(7) = "D" And t = 4) Then   '第7题
                                    t = WorksheetFunction.Max(c) - WorksheetFunction.Min(c)
                                    If (b(10) = "A" And t = 3) Or (b(10) = "B" And t = 2) Or _
                                        (b(10) = "C" And t = 4) Or (b(10) = "D" And t = 1) Then  '第10题
                                        Debug.Print "答案", Join(b, "") ': Exit For  '得到1个答案退出
                                    End If
                                End If
                            End If
                        End If
                    End If
                End If
            End If
        End If
    Next
    Debug.Print "累计用时" & Format(Timer - tm, "0.00")  '耗时
End Sub
  • 举例
x = 1: y = 3: z = 5

运行结果

答案          DACDCDBCCA
答案          DADBCDCCCC
答案          DDDBBDCBBA
答案          DDDBBDCBBC
累计用时6.04

x = 2: y = 8: z = 3

运行结果

答案          DAACCDBCCA
答案          DAACCDBCCC
答案          DACDCDBCCA
答案          DCCCADBAAA
累计用时6.01
  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
多维0-1背包问题是指在给定容量和一组物品的情况下,如何选择物品使得总重量不超过容量且总价值最大化。在这个问题中,每个物品有多个属性,我们要选择的是哪个属性的物品,以及每个物品在选择属性下的是否放入背包(0表示不放入,1表示放入)。 为了解决这个问题,我们可以使用一个二维数组来表示状态转移方程。假设有n个物品和m个属性,dp[i][j]表示前i个物品在j属性下的最大价值。 具体的穷举算法如下: 1. 初始化一个大小为(n+1)*(m+1)的二维数组dp,并将其所有元素初始化为0。 2. 遍历物品i从1到n,属性j从1到m,依次计算dp[i][j]的值。 3. 对于每个物品i和属性j,有两种情况: - 若第i个物品在属性j下的重量大于背包的容量,则dp[i][j] = dp[i-1][j],即不选择放入背包; - 若第i个物品在属性j下的重量小于等于背包的容量,则dp[i][j] = max(dp[i-1][j], dp[i-1][j-1] + 第i个物品的价值),即选择放入或不放入背包取决于哪种方式能获得更大的总价值。 最终,dp[n][m]即为所求的最大总价值。 下面是一个简单的用Matlab实现的代码示例: ```matlab function max_value = knapsack(n, m, weights, values, capacity) dp = zeros(n+1, m+1); for i = 1:n for j = 1:m if weights(i, j) > capacity dp(i+1, j+1) = dp(i, j+1); else dp(i+1, j+1) = max(dp(i, j+1), dp(i, j) + values(i, j)); end end end max_value = dp(n+1, m+1); end % 测试 n = 3; m = 2; weights = [3, 1; 2, 2; 1, 3]; values = [2, 3; 4, 5; 6, 7]; capacity = 5; max_value = knapsack(n, m, weights, values, capacity); disp(max_value); ``` 以上代码中,n表示物品的数量,m表示属性的数量,weights是一个n*m的矩阵,表示每个物品在不同属性下的重量,values是一个n*m的矩阵,表示每个物品在不同属性下的价值,capacity表示背包的容量。请根据实际情况修改测试用例中的n、m、weights、values和capacity的值,以便验证代码的正确性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

薛定谔_51

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值