排列与组合
加法法则和乘法法则
-
加法原理: 设事件 A 1 A_{1} A1 有 m 1 m_{1} m1 种产生方式, 事件 A 2 A_{2} A2 有 m 2 m_{2} m2 种产生方式, … \ldots …, 事件 A n A_{n} An 有 m n m_{n} mn 种产生方式, 则事件 A 1 A_{1} A1 或事件 A 2 A_{2} A2 … \ldots … 或事件 A n A_{n} An 有 m 1 + m 2 + … + m n m_{1} + m_{2} + \ldots + m_{n} m1+m2+…+mn 种产生方式。注意: 这里的事件 A 1 , A 2 , … , A n A_{1}, A_{2}, \ldots, A_{n} A1,A2,…,An 必须是互相独立的。
-
乘法原理: 设事件 A 1 A_{1} A1 有 m 1 m_{1} m1 种产生方式,事件 A 2 A_{2} A2 有 m 2 m_{2} m2 种产生方式, … \ldots …,事件 A n A_{n} An 有 m n m_{n} mn 种产生方式,则事件 A 1 , A 2 , … , A n A_{1}, A_{2}, \ldots, A_{n} A1,A2,…,An 依次连接产生共有 m 1 × m 2 × … × m n m_{1} \times m_{2} \times \ldots \times m_{n} m1×m2×…×mn 种不同方式。
-
注意: 这里的事件 A 1 , A 2 , … , A n A_{1}, A_{2}, \ldots, A_{n} A1,A2,…,An 必须是互相独立的。
例题: 如果从北京到到天津有2条道路可供选择,从天津到石家庄有 3 条道路可供选择, 从石家庄到太原有2条道路可供选择, 问从北京经天津、石家庄到太原有多少条道路可供选择?
2×3×2=12条。
例题: 从 1000 到 9999 的整数中, 问 (1) 含有 5 的数有多少个? (2) 含有多少个百位和十位数均为奇数的偶数? (3)各位数都不相同的奇数有多少个?
解 设有数字集合
{
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
}
\{0,1,2,3,4,5,6,7,8,9\}
{0,1,2,3,4,5,6,7,8,9} .
(1) 先求不含 5 的整数的个数. 这时候个位数字,十位数字和百位数字各有 9 种选择, 而千位数字只有 8 种选择, 所以不含 5 的整数的个数 =
8
×
9
×
9
×
9
=
5832
8 \times 9 \times 9 \times 9=5832
8×9×9×9=5832 , 从 1000 到 9999 共有 9000 个整数, 所以含有 5 的的整数 =
9000
−
5832
=
3168
9000- 5832=3168
9000−5832=3168 .
(2) 当个位数字为 0,2,4,6,8 的时候对应的该整数为偶数, 因此个位数有 5 种选择, 十位数字和百位数字各有5种选择, 而千位数字有9种选择, 故含有个百位和十位数均为奇数的偶数 = 9 × 5 × 5 × 5 = 1125 =9 \times 5 \times 5 \times 5=1125 =9×5×5×5=1125 .
(3) 当个位数字为 1,3,5,7,9 的时候对应数字为奇数. 如果要求各位数都不相同, 则个位数有 5 种选择, 当个位数选定之后, 千位数只有 8 种选择, 而当千位数选择之后, 百位数可以有 8 种选择, 以上三位数都选定之后, 剩下的十位数就只有 7 种选择了. 所以, 从 1000 到 9999 的整数中, 各位数字都不相同的奇数
=
8
×
8
×
7
×
5
=
2240
=8 \times 8 \times 7 \times 5=2240
=8×8×7×5=2240 .
排列与组合
定义1: 从
n
\mathrm{n}
n 个不同的元素中, 取 r 个并按次序
排列, 称为从
n
\mathrm{n}
n 中取
r
\mathrm{r}
r 个的一个排列, 全部这样的排列数记为
P
(
n
,
r
)
\mathbf{P}(\mathbf{n}, \mathbf{r})
P(n,r) .
P ( n , r ) = n ( n − 1 ) ⋯ ( n − r + 1 ) = n ! ( n − r ) ! P(n, r)=n(n-1) \cdots(n-r+1)=\frac{n!}{(n-r)!} P(n,r)=n(n−1)⋯(n−r+1)=(n−r)!n!
定义2: 从 n \mathrm{n} n 个不同的元素中, 取 r 个但是不考虑次序时候, 称为从 n 中取 r 个的一个组合, 全部这样的组合总数记为 C ( n , r ) \mathrm{C}(\mathrm{n}, \mathrm{r}) C(n,r) .
C ( n , r ) = P ( n , r ) r ! = n ! r 1 ( n − r ) ! C(n, r)=\frac{P(n, r)}{r!}=\frac{n!}{r 1(n-r)!} C(n,r)=r!P(n,r)=r1(n−r)!n!
定义 3: 从 n 个不同的元素中, 取 r 个沿一圆周排列, 称为从 n \mathrm{n} n 中取 r \mathrm{r} r 个的一个圆周排列, 全部这样的排列数记为 Q(n, r) .
Q ( n , r ) = P ( n , r ) r Q ( n , n ) = ( n − 1 ) ! Q(n, r)=\frac{P(n, r)}{r} \quad Q(n, n)=(n-1)! Q(n,r)=rP(n,r)Q(n,n)=(n−1)!
牛顿二项式公式
(
1
+
x
)
n
=
∑
k
=
0
n
C
n
k
x
k
(1+x)^{n}=\sum_{k=0}^{n} C_{n}^{k} x^{k}
(1+x)n=k=0∑nCnkxk
(
1
+
a
x
)
n
=
∑
k
=
0
n
C
n
k
a
k
x
k
(1+a x)^{n}=\sum_{k=0}^{n} C_{n}^{k} a^{k} x^{k}
(1+ax)n=k=0∑nCnkakxk
例: 在 ( 1 + 2 x ) n (1+2 x)^{n} (1+2x)n 的展开式中 x k x^{k} xk 的系数是 \qquad , 其中 ( 1 ⩽ k ⩽ n ) (1 \leqslant k \leqslant n) (1⩽k⩽n) 。
根据 ( 1 + a x ) n = ∑ k = 0 n C n k a k x k (1+a x)^{n}=\sum_{k=0}^{n} C_{n}^{k} a^{k} x^{k} (1+ax)n=∑k=0nCnkakxk,得出: x k x^{k} xk的系数为 ∑ k = 0 n C n k 2 k \sum_{k=0}^{n} C_{n}^{k} 2^{k} ∑k=0nCnk2k
推广牛顿二项式公式(必考内容)
( 1 + x ) − n = ∑ k = 0 n C − n k x k (1+x)^{-n}=\sum_{k=0}^{n} C_{-n}^{k} x^{k} (1+x)−n=k=0∑nC−nkxk
(
1
+
x
)
−
n
=
∑
k
=
0
n
C
−
n
k
x
k
(1+x)^{-n}=\sum_{k=0}^{n} C_{-n}^{k} x^{k}
(1+x)−n=k=0∑nC−nkxk
C
−
n
k
=
(
−
1
)
k
C
n
+
k
−
1
k
C_{-n}^{k}=(-1)^{k} C_{n+k-1}^{k}
C−nk=(−1)kCn+k−1k
(
1
+
x
)
−
n
=
∑
k
=
0
n
(
−
1
)
k
C
n
+
k
−
1
k
x
k
(1+x)^{-n}=\sum_{k=0}^{n}(-1)^{k} C_{n+k-1}^{k} x^{k}
(1+x)−n=k=0∑n(−1)kCn+k−1kxk
这个公式是重点,考的概率很大!!!!
(
1
−
x
)
−
n
=
∑
k
=
0
n
C
n
+
k
−
1
k
x
k
(1-x)^{-n}=\sum_{k=0}^{n} C_{n+k-1}^{k} x^{k}
(1−x)−n=k=0∑nCn+k−1kxk
例:如果五个文科生和五个理科生排成一排, 共有 \qquad 种不同的排法; 如果要求文科生和理科生交替排成一排, 则共有 \qquad 种不同的排法。
五个文科生和五个理科生排成一排,等同于10人做全排:
P
10
=
3628800
P_{10}=3628800
P10=3628800
第二问,先排5个理科生,再排5个文科生,文科生在理科生的左边或者右边两种情况。所以得出:
P
5
P
5
P
2
=
28800
P_{5} P_{5} P_{2}=28800
P5P5P2=28800
例: 如果四对夫妻围圆桌就座, 没有任何限制条件, 共有
\qquad
种不同的座法; 如果这四对夫妻中的四个男士和四个女士排成一排, 要求男女交替, 则有
\qquad
种不同的排法;如果这四对夫妻围圆桌就座, 要求夫妻相邻的座法有
\qquad
种。
根据:
Q
(
n
,
n
)
=
(
n
−
1
)
!
Q(n, n)=(n-1)!
Q(n,n)=(n−1)!
得到
Q
(
8
,
8
)
=
7
!
Q(8,8)=7!
Q(8,8)=7!
四个男士和四个女士排成一排, 要求男女交替,则有:
P
4
P
4
P
2
P_{4} P_{4} P_{2}
P4P4P2
夫妻相邻的座法:
3
!
×
2
4
3!\times 2^{4}
3!×24
可重组合与组合恒等式
-
多重集一元素可以多次出现的集合,即元素可以重复。我们把某个元素 a i a_{i} ai 出现的次数 n i ( n i = 0 , 1 , 2 , … ) n_{i}\left(n_{i}=0,1,2, \ldots\right) ni(ni=0,1,2,…) 叫做该元素的重复数,通常把含有 k 种不同元素的多重集S记作
{ n 1 ⋅ a 1 , n 2 ⋅ a 2 , … , n k ⋅ a k } \left\{n_{1} \cdot a_{1}, n_{2} \cdot a_{2}, \ldots, n_{k} \cdot a_{k}\right\} {n1⋅a1,n2⋅a2,…,nk⋅ak} -
可重排列
定义:从一个多重集
{ n 1 ⋅ a 1 , n 2 ⋅ a 2 , … , n k ⋅ a k } \left\{n_{1} \cdot a_{1}, n_{2} \cdot a_{2}, \ldots, n_{k} \cdot a_{k}\right\} {n1⋅a1,n2⋅a2,…,nk⋅ak}
中有序选取的 r 个元素叫做 S 的一个
r − ( 可重 ) \boldsymbol{r} -(可重) r−(可重)排列。当 r = n ( n = n 1 + n 2 + … + n k ) r=n\left(n=n_{1}+n_{2}+\ldots+n_{k}\right) r=n(n=n1+n2+…+nk)
时也叫做S的一个排列。
定理 设多重集 S = { ∞ ⋅ a 1 , ∞ ⋅ a 2 , … , ∞ ⋅ a k } S=\left\{\infty \cdot a_{1}, \infty \cdot a_{2}, \ldots, \infty \cdot a_{k}\right\} S={∞⋅a1,∞⋅a2,…,∞⋅ak} 则的 r − ( 可重 ) \mathrm{r} -(可重) r−(可重)排列数是 k r k^{r} kr
定理: 设 S = { n 1 ⋅ a 1 , n 2 ⋅ a 2 , … , n k ⋅ a k } S=\left\{n_{1} \cdot a_{1}, n_{2} \cdot a_{2}, \ldots, n_{k} \cdot a_{k}\right\} S={n1⋅a1,n2⋅a2,…,nk⋅ak} , 且 n = ∑ i = 1 k n i n=\sum_{i=1}^{k} n_{i} n=∑i=1kni , 则 S 的排列数等于 n ! n 1 ! ⋅ n 2 ! … ⋅ n k ! \frac{n!}{n_{1}!\cdot n_{2}!\ldots \cdot n_{k}!} n1!⋅n2!…⋅nk!n!
例:求有4个数位的二进制数的个数
解:问题相当于多重集
{
∞
⋅
0
,
∞
⋅
1
}
\{\infty \cdot 0, \infty \cdot 1\}
{∞⋅0,∞⋅1} 的4-排列
问题,故其个数为
N
=
2
4
=
16
\mathrm{N}=2^{4}=16
N=24=16
例:用两面红旗, 三面黄旗依次悬挂在一根旗杆上,问可以组成多少种不同的标志?
解:所求的标志数是多重集 { 2 红旗, 3 黄旗 } \{2 红旗, 3 黄旗 \} {2红旗,3黄旗} 的排列数,故 N = 5 ! / ( 2 ! ∗ 3 ! ) = 10 \mathrm{N}=5!/(2!* 3!)=10 N=5!/(2!∗3!)=10
允许重复的组合—可重组合
允许重复(可重)的组合是指从 S = { 1 , 2 , … n } S=\{1,2, \ldots n\} S={1,2,…n}中取 r 个元素 a 1 , a 2 , … , a r a_{1}, a_{2}, \ldots, a_{r} a1,a2,…,ar ,允许重复,即允许 a i = a j , i ≠ j a_{i}=a_{j}, i \neq j ai=aj,i=j . 允许重复的组合个数记作 C ( n , r ) C (\mathbf{n}, \mathbf{r}) C(n,r)
定理1.2 从 S = { 1 , 2 , … n } S=\{1,2, \ldots n\} \quad S={1,2,…n} 中取 r 个作可重的组合,其个数为 C ( n + r − 1 , r ) C_{(n+r-1, r)} C(n+r−1,r)