题意:求1到n中所有和n互质的数的四次方之和。
先通过公式求出1^4+2^4+3^4+…+n^4,然后要减去那些和n有相同质因数的数。减的时候会重复,所以要用容斥原理补上重复减的,并且在用公式的时候除了再模需要求下30的逆元,转换成乘了再模。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define ll long long
const ll inv = 233333335;
const ll mod = 1000000007;
int T;
ll n, ans;
int cnt = 0;
int prime[20];
ll fast_pow(ll a, ll n)
{
ll ans = 1;
while (n)
{
if (n & 1) ans = ans * a % mod;
n >>= 1;
a = a * a % mod;
}
return ans;
}
// ll Fermat(ll a, ll p)//费马小定理求a关于p的逆元
// {
// return pow_mod(a, p - 2, p);
// }
bool isprime(int x)
{
if (x <= 1) return false;
if (x == 2 || x == 3 || x == 5 || x == 7) return true;
for (int i = 2; i <= sqrt(x); i++)
if (x % i == 0) return false;
return true;
}
ll getsum(ll n)
{
// = n (n + 1) (2n + 1) (3n * n + 3n - 1) / 30
ll ans = 1;
ans = ans * n % mod;
ans = ans * (n + 1) % mod;
ans = ans * (2 * n % mod + 1) % mod;
ans = ans * (3 * n * n % mod + 3 * n % mod - 1) % mod;
ans = ans * inv % mod;
return ans;
}
void getprime(ll n)
{
cnt = 0;
int k = sqrt(n);
for (int i = 2; i <= k; i++)
{
if (n == 1) break;
if (n % i) continue;
prime[cnt++] = i;
while (n % i == 0) n /= i;
}
if (isprime(n)) prime[cnt++] = n;
}
int cnt1 = 0;
ll cal(ll x)
{
ll ans = 1;
int c = 0;
while (x)
{
if (x & 1)
{
ans = ans % mod * prime[c] % mod;
cnt1++;
}
c++;
x >>= 1;
}
return ans;
}
int main()
{
scanf("%d", &T);
while (T--)
{
scanf("%lld", &n);
getprime(n);
ans = getsum(n);
int len = pow(2, cnt);
for (int i = 1; i < len; i++)
{
cnt1 = 0;
ll tmp = cal(i);
if (cnt1 % 2 == 0) ans = (ans + fast_pow(tmp, 4) * getsum(n / tmp) % mod) % mod;
else ans = (ans - fast_pow(tmp, 4) * getsum(n / tmp) % mod + mod) % mod;
}
printf("%lld\n", ans);
}
return 0;
}