HDU 4059 The Boss on Mars【容斥原理+逆元】

题目链接

题意:求1到n中所有和n互质的数的四次方之和。

先通过公式求出1^4+2^4+3^4+…+n^4,然后要减去那些和n有相同质因数的数。减的时候会重复,所以要用容斥原理补上重复减的,并且在用公式的时候除了再模需要求下30的逆元,转换成乘了再模。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define ll long long
const ll inv = 233333335;
const ll mod = 1000000007;

int T;
ll n, ans;
int cnt = 0;
int prime[20];

ll fast_pow(ll a, ll n)
{
    ll ans = 1;
    while (n)
    {
        if (n & 1)  ans = ans * a % mod;
        n >>= 1;
        a = a * a % mod;
    }
    return ans;
}

// ll Fermat(ll a, ll p)//费马小定理求a关于p的逆元
// {
//     return pow_mod(a, p - 2, p);
// }

bool isprime(int x)
{
    if (x <= 1) return false;
    if (x == 2 || x == 3 || x == 5 || x == 7)   return true;
    for (int i = 2; i <= sqrt(x); i++)
        if (x % i == 0) return false;
    return true;
}

ll getsum(ll n)
{
    // = n (n + 1) (2n + 1) (3n * n + 3n - 1) / 30
    ll ans = 1;
    ans = ans * n % mod;
    ans = ans * (n + 1) % mod;
    ans = ans * (2 * n % mod + 1) % mod;
    ans = ans * (3 * n * n % mod + 3 * n % mod - 1) % mod;
    ans = ans * inv % mod;
    return ans;
}

void getprime(ll n)
{
    cnt = 0;
    int k = sqrt(n);
    for (int i = 2; i <= k; i++)
    {
        if (n == 1) break;
        if (n % i)  continue;
        prime[cnt++] = i;
        while (n % i == 0)  n /= i;
    }
    if (isprime(n)) prime[cnt++] = n;
}

int cnt1 = 0;

ll cal(ll x)
{
    ll ans = 1;
    int c = 0;
    while (x)
    {
        if (x & 1)
        {
            ans = ans % mod * prime[c] % mod;
            cnt1++;
        }
        c++;
        x >>= 1;
    }
    return ans;
}

int main()
{
    scanf("%d", &T);
    while (T--)
    {
        scanf("%lld", &n);
        getprime(n);
        ans = getsum(n);
        int len = pow(2, cnt);
        for (int i = 1; i < len; i++)
        {
            cnt1 = 0;
            ll tmp = cal(i);
            if (cnt1 % 2 == 0)  ans = (ans + fast_pow(tmp, 4) * getsum(n / tmp) % mod) % mod;
            else    ans = (ans - fast_pow(tmp, 4) * getsum(n / tmp) % mod + mod) % mod;
        }
        printf("%lld\n", ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值