Burnside引理、Polya定理和欧拉函数

要解决旋转相同或对称相同等的涂色问题,首先要知道burnside引理和polya定理。

burnside引理和polya定理

polya定理:用m种颜色给长度为n的序列染色,不同的染色方案数等于

L=si=1mc(gi)|G|

其中:

|G| 为置换方法总数

cgi 为第 i 种置换方法的循环节个数

而旋转k个位置后,循环节个数为 gcd(n,k)

例如:对于序列 (1,2,3,4,5,6) ,旋转3个位置后,序列变为 (4,5,6,1,2,3) ,循环节为 (1 4)(2 5)(3 6) ,有 gcd(6,3)=3 个。

所以

L=ni=1ngcd(n,i)n

然而很多题目中 n 都非常的大,可能会到n1e9,直接for循环显然不可能。

我们可以枚举这个gcd的值,只要枚举到 n 就可以了。

假设我们现在枚举到 t t=gcd(n,i),那么显然 t 一定是n的倍数。我们令 n=xt i=yt ,则 x,y 互质, x=nt y ϕ(i)种可能性。

这里的 ϕ(i) 就是欧拉函数。 ϕ(i) 表示 [1,i] 中和 i 互质的数的个数。

欧拉函数

ϕ(1)=1

p 为素数时,ϕ(p)=p1

n=pk p 为素数时,ϕ(pk)=pkpk1,因为要减去 [1,pk] 中因子包含 p 的数。这些数是p,2p,3p,...,pk1p,共有 pk1 个,所以 ϕ(pk)=pkpk1=pk(11p)

n=p1p2 p1,p2 都是素数时, ϕ(n)=ϕ(p1)ϕ(p2) ,这是因为 ϕ(n) 为积性函数。

积性函数:若对于任意的互质的 m n f(mn)=f(m)f(n) 都成立,则 f(n) 为积性函数。

关于欧拉函数是积性函数的证明

这篇证明讲的很清楚,想知道的建议看看。

对于一个任意的正整数,都可以分解质因数成这样的形式:

n=pk11pk22...pkrr

ϕ(n)=ϕ(pk11pk22...pkrr)=ϕ(pk11)ϕ(pk22)...ϕ(pkrr)
=pk11pk22...pkrr(11p1)(11p2)...(11pr)
=n(11p1)(11p2)...(11pr)

所以最后总的染色方案数为 L=n|tnt1ϕ(nt)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值