1.arange和range的区别
arange是np中的函数,返回的是一个数组
np.arange(5)
array([0, 1, 2, 3, 4])
range是Python自带的函数,返回的是一个迭代器
range(5)
range(0, 5)
2.
创建一个数组选取数组元素
numpy数据类型,例如np.int16
获取数组中数据元素所占空间大小,使用a.dtype.itemsize属性
e
array([0, 1, 2, 3, 4, 5, 6])
e.dtype
dtype('int32')
e.dtype.itemsize
4
一位数组的切片和索引
reshape
a
array([1, 2, 3, 4, 5, 6])
b = a.reshape(2,3)
b
array([[1, 2, 3],
[4, 5, 6]])
a
array([1, 2, 3, 4, 5, 6])
reshape之后原数组是没有变化的
多维数组的索引和切片
b
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
b[0,0,0]
0
b[:,0,0]
array([ 0, 12])
b[0,1]
array([4, 5, 6, 7])
b[0,1,:]
array([4, 5, 6, 7])
改变数组的维度
1.ravel()
b.ravel()
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23])
2.flatten()
b.flatten()
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23])
revel和flatten都不会改变原数组
3.用元祖设置维度
b.shape=(6,4)
b.shape = (6,4)
b
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]])
这样会改变原数组
4.矩阵转置
b.transpose()
array([[ 0, 4, 8, 12, 16, 20],
[ 1, 5, 9, 13, 17, 21],
[ 2, 6, 10, 14, 18, 22],
[ 3, 7, 11, 15, 19, 23]])
5.resize
resize和reshape功能一样,但resize会改变原数组
b.resize((2,12))
b
array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]])
组合数组
水平组合:np.hstack((a,b))
垂直组合:np.vstack((a,b))
列组合:np.column_stack((a,b)),和水平组合效果一样
行组合:np.row_stack((a,b)),和垂直组合效果一样
a = np.arange(9).reshape(3,3)
a
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
b = 2*a
b
array([[ 0, 2, 4],
[ 6, 8, 10],
[12, 14, 16]])
np.hstack((a,b))
array([[ 0, 1, 2, 0, 2, 4],
[ 3, 4, 5, 6, 8, 10],
[ 6, 7, 8, 12, 14, 16]])
np.vstack((a,b))
array([[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 0, 2, 4],
[ 6, 8, 10],
[12, 14, 16]])
np.column_stack((a,b))
array([[ 0, 1, 2, 0, 2, 4],
[ 3, 4, 5, 6, 8, 10],
[ 6, 7, 8, 12, 14, 16]])
np.row_stack((a,b))
array([[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 0, 2, 4],
[ 6, 8, 10],
[12, 14, 16]])
数组的属性
c.ndim:数组的维度
c.dize:数组的元素个数
c.itemsize:数组中元素所占内存的字节数
c.nbytes:整个数组所占的存储空间,就是size和itemsize属性值的乘积
T的属性效果和transpose函数一样
c
array([[[1, 2],
[3, 4],
[5, 6]]])
c.ndim
3
c.size
6
c.itemsize
4
c.nbytes
24
对于一维数组,其T属性就是原数组
b
array([1, 2, 3, 4, 5])
b.T
array([1, 2, 3, 4, 5])
遍历数组:
flat属性
b
array([[0, 1],
[2, 3]])
f = b.flat
for item in f :
print(item)#0 1 2 3
数组转换为列表,b.tolist()
改变数组元素类型,b.astype()
b
array([[0, 1],
[2, 3]])
b.tolist()
[[0, 1], [2, 3]]
b
array([[0, 1],
[2, 3]])
b.astype(float)
array([[ 0., 1.],
[ 2., 3.]])
b.astype('float')
array([[ 0., 1.],
[ 2., 3.]])
csv(Comma-Separated Value,逗号分隔值)
excel就可以另存为csv文件
import numpy as np
c,v = np.loadtxt('data.csv',delimiter=',',usecols=(6,7),unpack=True)#unpack=True表示返回多个结果
print(c,v)
#计算成交量加权平均价格
vwap = np.average(c,weights=v)
print(vwap)
#计算成交量价格算术平均值,使用mean和average函数都可以
_mean = np.mean(c)
print(_mean)
_mean2 = np.average(c)
print(_mean2)
h,l = np.loadtxt('data.csv',delimiter=',',usecols=(4,5),unpack=True)
#计算最大值
print(np.max(h))
#计算最小值
print(np.min(l))
#使用ptp函数计算数组的取值范围,返回数组元素的最大值和最小值之间的差距,也就是max(array)-min(array)
print(np.ptp(h))
print(np.max(h)-np.min(h))
print(np.ptp(l))
print(np.max(l)-np.min(l))
#简单统计分析
c = np.loadtxt('data.csv',delimiter=',',usecols=(6),unpack=True)
#计算数组中位数,奇数就是中间那个数,偶数就是中间两个数的平均值
median = np.median(c)
print(median)
#对数组进行排序,只对一维数组有效
sorted_c = np.msort(c)
#计算方差
variance = np.var(c)
print(variance)
variance_from_definition = np.mean((c-c.mean())**2)
print(variance_from_definition)