数据库必考题目~最小依赖集(最小覆盖、极小函数依赖集)

本文详细阐述了如何从函数依赖集中找到最小依赖集的过程,包括三个关键步骤:右部最小化、规则最小化和左部最小化。通过具体实例,如R(U,F)和F={C→A,CG→D,...}

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、定义:
如果函数依赖集F满足下列3个条件,则称F为最小依赖集:
(1)F中任一函数依赖的右部仅含有一个属性
(2)F中不存在这样的函数依赖X→A,使得F与F-{X→A}等价
(3)F中不存在这样的函数依赖X→A,X有真子集Z使得F-{X→A}∪{Z→A}与F等价
二、步骤:
(1)右部最小化:右切,使每个函数依赖的右部仅有一个属性
(2)规则最小化:除本求包(对每个函数依赖的左部做除本求包,求包的结果如果不包含本函数依赖的右部,本函数依赖保留;求包的结果如果包含了本函数依赖的右部,删除本函数依赖)
(3)左部最小化
三、例题:已知关系模式R(U,F),U={A,B,C,D,E,F,G},F={BCD→A,BC→E,A→F,F→G,C→D,A→G},求F的最小函数依赖集。
在这里插入图片描述
四、例题:设F={C→A,CG→D,CG→B,CE→A,ACD→B},求最小函数依赖集
在这里插入图片描述

### 关于XXL-JOB的面试题目及解答 #### 什么是XXL-JOB? XXL-JOB是一个分布式任务调度平台,其设计目标是开发迅速、学习简单、轻量级、易扩展。它采用Java语言编写,基于Quartz框架进行了二次开发,具备可视化的操作界面以及强大的群管理能力[^1]。 #### 讲解XXL-JOB的工作原理 XXL-JOB通过注册中心来协调各个节点之间的通信与协作。当执行器启动时会向调度器注册自己,并定期发送心跳包保持连接状态;而调度器则负责根据设定的时间表达式计算下一次触发时间并通知相应的执行器去运行指定的任务实例。此外还实现了诸如弹性伸缩、故障转移等功能特性以保障系统的高可用性和稳定性。 #### 如何在项目中使用XXL-JOB? 要在项目里成XXL-JOB主要分为以下几个方面考虑: - **引入依赖**:按照官方文档指引添加Maven或Gradle中的相应坐标; - **配置文件设置**:修改application.yml或其他形式的应用程序属性文件里的参数项比如admin地址列表、access token认证密钥等; - **创建JobHandler类**:继承IJobHandler接口实现doExecute方法定义具体业务逻辑; - **部署上线前测试验证功能是否正常工作**: ```java import com.xxl.job.core.biz.model.ReturnT; import com.xxl.job.core.handler.IJobHandler; public class MySimpleJob extends IJobHandler { @Override public ReturnT<String> execute(String param) throws Exception { System.out.println("My simple job is running..."); return SUCCESS; } } ``` #### XXL-JOB的任务路由策略有哪些? XXL-JOB提供多种任务分配算法供开发者选用,包括但不限于轮询模式(RoundRobin)、最小活跃线程数优先(LeastActive)、哈希一致性HashingConsistent等。这些不同的负载均衡方案能够适应不同场景下的性能优化需求。 #### xxl-job 和 Quartz 主要区别是什么? 两者都是优秀的定时任务解决方案工具库,但是存在一些显著差异之处: - **架构层面**:xxl-job天生就支持分布式的环境部署形态,相比之下quartz虽然也能做到这一点但需要额外配置较多组件才能达成目的; - **用户体验角度出发来看待的话**:前者拥有图形化UI便于管理员日常运维管理工作开展,后者更多依靠命令行或者第三方插件完成相同的操作流程; - **社区生态建设情况对比而言**:目前看来国内对于xxl-job的关注度更高一点,在遇到问题求助的时候更容易获得帮助和支持。 #### xxl-job 支持哪些任务调度方式及其特点分析? | 调度类型 | 描述 | | --- | --- | | Cron 表达式驱动型 | 用户自行输入标准cron格式字符串描述周期规律,灵活性极高适用于大部分场合 | | 固定频率间隔型 | 设定固定的毫秒级别单位作为两次相邻动作之间等待的时间长度,适合用于监控指标采之类高频次重复性作业| | 定时定点触发型 | 只会在特定日期时刻点上激活一次性的计划安排,常应用于节假日促销活动开启关闭控制等方面| 每种类型的优点在于针对性强易于理解和掌握缺点则是适用范围相对较窄无法覆盖所有可能遇见的实际应用场景因此实际选型过程中应当综合考量业务背景因素做出合理决策. #### xxl-job 的任务触发方式有哪些?怎样进行配置呢? xxl-job允许用户选择手动按钮点击即时生效或是自动按预设条件满足后立即响应两种途径来进行触发行为的选择。具体的配置过程涉及到后台数据库表结构的设计变更以及前端页面交互元素布局调整等多个环节,建议参照官方给出的最佳实践指南逐步实施改造升级措施确保整个迁移过渡平稳顺利。 #### 分布式环境下xxl-job 是怎么保证任务只被执行一次的? 为了防止因网络波动等原因造成同一份指令被多个服务器同时接收到从而引发数据不一致风险现象的发生,xxl-job采取了一系列预防机制如全局唯一ID生成规则制定、乐观锁版本号校验更新机制建立等等手段有效规避此类隐患威胁提升整体健壮程度水平。 #### xxl-job 是否能处理好任务间的先后顺序关系?如果可以应该怎样做才合适? 确实如此,xxl-job内置了一套完善的前置依赖解析引擎可以帮助我们轻松解决这个问题。只需要在新建job handler对象之前先声明好上下游关联链条即可让系统自动识别并遵循既定路径依次串行调用下去直至全部结束为止。 #### xxl-job 提供了几种常见的任务分片策略选项可供挑选?依据什么原则选取最恰当的那个? 针对大规模并发请求场景下可能出现的数据倾斜难题,xxl-job特别推出了三种主流的sharding policy让用户自由组合运用: - `AVERAGE` 平均划分法——将总数均匀分割成若干子分别交给各台机器独立承担一部分压力; - `MOD` 模运算取余法则——利用hashcode%size的方式快速定位到某一台设备上面中处理一批相似特征的对象合体; - `CUSTOMIZED` 自定义函数映射规则——给予充分自主权给使用者根据自己特有的业务诉求灵活定制个性化的映射转换逻辑。 最终决定采用哪一种取决于当前所处的具体上下文中各项约束条件综合作用的结果。 #### 当XXL-Job的任务执行失败了,应该如何排查和处理? 面对这种情况可以从这几个方向入手调查原因所在: - 查看日志记录寻找异常堆栈信息线索; - 利用调试工具单步跟踪源码找出潜在缺陷位置; - 对比预期输出结果同实际情况是否存在偏差; - 尝试简化输入参数规模缩小影响面以便更快锁定根本症结所在; - 如果有必要还可以联系开源社区寻求外部力量协助解决问题[^2]。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值