pytorch 空洞卷积神经网络识别fashion_NNIST

一、导包

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score,confusion_matrix,classification_report
import seaborn as sns
import copy
import time
import torch
import torch.nn as nn
from torch.optim import Adam
import torch.utils.data as Data
from torchvision import transforms
from torchvision.datasets import FashionMNIST

二、训练集图像数据准备

##图像数据准备

#使用FasnionMNIST数据,准备训练数据集
train_data = FashionMNIST(
    root = "./data/FashionMNIST",
    train = True,
    transform = transforms.ToTensor(),
    download = True
)
#定义一个数据加载器
train_loader = Data.DataLoader(
    dataset = train_data,
    batch_size = 64,
    shuffle = False,
    num_workers = 2,
)
#计算train_loader有多少个batch
print("train_loader的batch数量为:",len(train_loader))
# train_loader的batch数量为: 938

三、获取一个batch的图像,将其可视化

#获得一个batch的数据
for step,(b_x,b_y) in enumerate(train_loader):
    if step > 0 :
        break
#可视化一个batch的图像
batch_x = b_x.squeeze().numpy()
batch_y = b_y.numpy()
class_label = train_data.classes
class_label[0] = "T-shirt"
plt.figure(figsize = (12,5))
for ii in np.arange(len(batch_y)):
    plt.subplot(4,16,ii+1)
    plt.imshow(batch_x[ii,:,:],cmap = plt.cm.gray)
    plt.title(class_label[batch_y[ii]],size = 9)
    plt.axis("off")
    plt.subplots_adjust(wspace = 0.05)

在这里插入图片描述

四、测试数据集处理

#对测试集进行处理
test_data = FashionMNIST(
    root = "./data/FashionMNIST",
    train = False,
    download = False
)
##为数据添加一个通道维度,并且取值范围缩放到0-1之间
test_data_x = test_data.data.type(torch.FloatTensor)/255.0
test_data_x = torch.unsqueeze(test_data_x,dim = 1)
test_data_y = test_data.targets
print("test_data_x.shape:",test_data_x.shape)
print("test_data_y.shape:",test_data_y.shape)
# test_data_x.shape: torch.Size([10000, 1, 28, 28])
# test_data_y.shape: torch.Size([10000])

五、空洞卷积神经网络的搭建

##空洞卷积神经网络的搭建
class MyConvdilaNet(nn.Module):
    def __init__(self):
        super(MyConvdilaNet,self).__init__()
        ##定义第一个卷积层
        self.conv1 = nn.Sequential(
            ##卷积后: (1*28*28)---(16*28*28)
            nn.Conv2d(1,16,3,1,1,dilation = 2),
            nn.ReLU(),
            nn.AvgPool2d(2,2), ##(16*26*26)--(16*13*13)
        )
        ##定义第二个卷积层
        self.conv2 = nn.Sequential(
            nn.Conv2d(16,32,3,1,0,dilation=2),
            ##卷积操作 (16*13*13)---(32*9*9)
            nn.ReLU(),
            nn.AvgPool2d(2,2),
        )
        self.classifier = nn.Sequential(
            nn.Linear(32*4*4,256),
            nn.ReLU(),
            nn.Linear(256,128),
            nn.ReLU(),
            nn.Linear(128,10)
        )
    ##定义网络的向前传播路径
    def forward(self,x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = x.view(x.size(0),-1) ##展平多维的卷积图层
        output = self.classifier(x)
        return output
##输出网络结构
myconvdilanet = MyConvdilaNet()
print(myconvdilanet )
# MyConvdilaNet(
#   (conv1): Sequential(
#     (0): Conv2d(1, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), dilation=(2, 2))
#     (1): ReLU()
#     (2): AvgPool2d(kernel_size=2, stride=2, padding=0)
#   )
#   (conv2): Sequential(
#     (0): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), dilation=(2, 2))
#     (1): ReLU()
#     (2): AvgPool2d(kernel_size=2, stride=2, padding=0)
#   )
#   (classifier): Sequential(
#     (0): Linear(in_features=512, out_features=256, bias=True)
#     (1): ReLU()
#     (2): Linear(in_features=256, out_features=128, bias=True)
#     (3): ReLU()
#     (4): Linear(in_features=128, out_features=10, bias=True)
#   )
# )

六、卷积神经网络预测与训练—定义网络的训练过程函数

##定义网络的训练过程函数
def train_model(model,traindataloader,train_rate,criterion,optimizer,num_epochs=25):
    #model:网络模型
    #trainloader:训练数据集,会切分为训练集和验证集
    #train_rate:训练集batchsize百分比
    #criterion:损失函数
    #optimizer:优化方法
    #num_epochs:训练的轮数
    ##计算训练使用的batch数量
    batch_num = len(traindataloader)
    train_batch_num = round(batch_num * train_rate)
    ##复制模型的参数
    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.0
    train_loss_all = []
    train_acc_all = []
    val_loss_all = []
    val_acc_all = []
    since = time.time()
    for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch,num_epochs -1))
        print('-'*10)
        ##每个epoch有两个训练阶段
        train_loss = 0.0
        train_corrects= 0
        train_num= 0
        val_loss = 0.0
        val_corrects = 0
        val_num = 0
        for step,(b_x,b_y) in enumerate(traindataloader):
            if step < train_batch_num:
                model.train() ##设置模型为训练模式
                output = model(b_x)
                pre_lab = torch.argmax(output,1)
                loss = criterion(output,b_y)
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                train_loss += loss.item() * b_x.size(0)
                train_corrects += torch.sum(pre_lab == b_y.data)
                train_num += b_x.size(0)
            else:
                model.eval() #3设置模型为评估模式
                output = model(b_x)
                pre_lab = torch.argmax(output,1)
                loss = criterion(output,b_y)
                val_loss += loss.item()*b_x.size(0)
                val_corrects += torch.sum(pre_lab == b_y.data)
                val_num += b_x.size(0)
        
        ##计算一个epoch在训练集和验证集上的损失和精度
        train_loss_all.append(train_loss/train_num)
        train_acc_all.append(train_corrects.double().double().item()/train_num)
        val_loss_all.append(val_loss/val_num)
        val_acc_all.append(val_corrects.double().item()/val_num)
        print('{} Train Loss:{:.4f}  Train Acc: {:.4f}'.format(epoch,train_loss_all[-1],train_acc_all[-1]))
        print('{} Val Loss:{:.4f}  Val Acc:{:.4f}'.format(epoch,val_loss_all[-1],val_acc_all[-1]))
        ##拷贝模型最高精度下的参数
        if val_acc_all[-1] > best_acc:
            best_acc = val_acc_all[-1]
            best_model_wts = copy.deepcopy(model.state_dict())
        time_use = time.time() - since
        print("Train and val complete in {:.0f}m {:.0f}s".format(time_use // 60,time_use % 60))
    ##使用最好模型的参数
    model.load_state_dict(best_model_wts)
    train_process = pd.DataFrame(
        data = {
            "epoch":range(num_epochs),
            "train_loss_all":train_loss_all,
            "val_loss_all":val_loss_all,
            "train_acc_all":train_acc_all,
            "val_acc_all":val_acc_all
        }
    )
    return model,train_process

七、对指定的模型和优化器进行训练

##空洞卷积神经网络的训练与预测
##对模型进行训练
optimizer = torch.optim.Adam(myconvdilanet.parameters(),lr=0.0003)
criterion = nn.CrossEntropyLoss() ##损失函数
myconvdilanet,train_process = train_model(
    myconvdilanet,train_loader,0.8,criterion,optimizer,num_epochs=25
)
# Epoch 0/24
# ----------
# 0 Train Loss:0.8865  Train Acc: 0.6777
# 0 Val Loss:0.6442  Val Acc:0.7471
# Train and val complete in 0m 17s
# Epoch 1/24
# ----------
# 1 Train Loss:0.6174  Train Acc: 0.7630
# 1 Val Loss:0.5696  Val Acc:0.7806
# Train and val complete in 0m 33s
# ...
# ...
# Epoch 23/24
# ----------
# 23 Train Loss:0.2665  Train Acc: 0.9008
# 23 Val Loss:0.3092  Val Acc:0.8849
# Train and val complete in 7m 3s
# Epoch 24/24
# ----------
# 24 Train Loss:0.2620  Train Acc: 0.9027
# 24 Val Loss:0.3083  Val Acc:0.8852
# Train and val complete in 7m 20s


##训练过程中的精度和损失函数可视化
plt.figure(figsize = (12,4))
plt.subplot(1,2,1)
plt.plot(train_process.epoch,train_process.train_loss_all,"ro-",label = "Train loss")
plt.plot(train_process.epoch,train_process.val_loss_all,"bs-",label = "Val loss")
plt.legend()
plt.xlabel("epoch")
plt.ylabel("Loss")
plt.subplot(1,2,2)
plt.plot(train_process.epoch,train_process.train_acc_all,"ro-",label = "Train acc")
plt.plot(train_process.epoch,train_process.val_acc_all,"bs-",label = "Val acc")
plt.xlabel("epoch")
plt.ylabel("acc")
plt.legend()
plt.show()

在这里插入图片描述
八、测试集预测,并使用混淆矩阵热力图可视化

##对测试集进行预测
myconvdilanet.eval()
output = myconvdilanet(test_data_x)
pre_lab = torch.argmax(output,1)
acc = accuracy_score(test_data_y,pre_lab)
print("在测试集上的预测精度为:",acc)

##可视化
conf_mat = confusion_matrix(test_data_y,pre_lab)
df_cm = pd.DataFrame(conf_mat,index = class_label,columns = class_label)
heatmap = sns.heatmap(df_cm,annot = True,fmt = "d",cmap = "YlGnBu")
heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(),rotation=0,ha = "right")
heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(),rotation=45,ha = "right")
plt.ylabel("True label")
plt.xlabel("Predict label")
plt.show()
# 在测试集上的预测精度为: 0.8846

在这里插入图片描述

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值