- 博客(14)
- 收藏
- 关注
原创 协同过滤推荐算法:UserCF、ItemCF
目录一、协同过滤算法二、基于邻域的算法:UserCF、ItemCF三、UserCF、ItemCF的改进一、协同过滤推荐算法协同过滤算法是指基于用户行为数据设计的推荐算法,主要包括:1.基于邻域的算法:UserCF(基于用户的协同过滤算法)、ItemCF(基于物品的协同过滤算法)2.隐语义模型:LFM3.基于图的随机游走算法:PersonalRank本文主要讲解基...
2018-08-17 18:13:29 27483 2
原创 判断点是否在矩形内
如图判断点PPP是否在矩形P1P2P3P4P_{1}P_{2}P_{3}P_{4}P1P2P3P4内部?从上图可以看出:点 P{P}P 位于矩形内部 ⇔\Leftrightarrow⇔ {∡PP1P4≤90∡PP1P2≤90∡PP3P4≤90∡PP3P2≤90\left\{\begin{aligned} \measuredangle PP_{1}P_{4}\leq90\\ \meas...
2019-04-23 12:07:21 2648
原创 python编码解码:encode、decode
python提供encode、decode两个函数来实现str类型和byte类型的转换......;常见编码方式:ASCⅡ,Unicode,UTF-8......
2019-01-17 20:51:57 980
原创 K近邻:KNN
K近邻法假设给定一个训练数据集,其中的实例类别已定,分类时,对新的实例,根据其K个最近邻的数据实例的类别,通过多数表决的方式进行预测。通俗点说,就是物以类聚人以群分,你身边的K个人大多属于什么类型,那么你就属于什么类型。
2019-01-09 18:31:35 249
原创 玩转睿思三:自动有选择地回帖
睿思是个很好的平台,给西电er在科研之余带来了很多的乐趣,在水睿思的时候就想能不能写个程序自动回复帖子,于是就有了玩转睿思系列博客。睿思自动回帖共包括三部分:玩转睿思一:模拟浏览器回帖玩转睿思二:生成回帖信息玩转睿思三:自动有选择的回帖...
2019-01-03 20:36:20 729
原创 玩转睿思二:生成回帖信息
睿思是个很好的平台,给西电er在科研之余带来了很多的乐趣,在水睿思的时候就想能不能写个程序自动回复帖子,于是就有了玩转睿思系列博客。睿思自动回帖共包括三部分:玩转睿思一:模拟浏览器回帖玩转睿思二:生成回帖信息玩转睿思三:自动有选择的回帖...
2019-01-03 20:32:12 517
原创 玩转睿思一:模拟浏览器回帖
睿思是个很好的平台,给西电er在科研之余带来了很多的乐趣,在水睿思的时候就想能不能写个程序自动回复帖子,于是就有了玩转睿思系列博客。睿思自动回帖共包括三部分:玩转睿思一:模拟浏览器回帖玩转睿思二:生成回帖信息玩转睿思三:自动有选择的回帖一.睿思回帖分析要使用代码模拟浏览器对睿思睿思上的帖子进行回复,就需要对浏览器的回帖过程进行分析:使用火狐浏览器开发者工具中的查看器对浏览器回帖...
2019-01-03 19:59:00 609 2
原创 像素值加减:1-2=-1?
在对图像像素值进行加减操作时,要注意数据类型,不然就容易造成数据的溢出,计算出的结果并不是你想得到的值,下面给出例子。首先定义一个矩阵保存为图片:from skimage.io import imread,imsaveimport numpydata = [[1,2,3],[255,3,1], [45,113,2]]imsave(‘test.png’,pic_data)接着读取图片...
2018-12-26 20:26:37 538
原创 支持向量机(SVM)
一.支持向量机支持向量机模型用于二分类问题,一般分为3种: 线性支持向量机:用于数据线性可分的情况 支持向量机:用于数据总体线性可分,但是有个别点例外 非线性支持向量机:用于数据线性不可分的情况二.线性可分支持向量机线性可分支持向量机学习的基本思想就是:求解能够正确划分数据集且与数据集几何间隔最大的分离超平面,加上几何间隔最大这个条件,超平面就唯一确定了...
2018-12-18 19:21:08 681
原创 主成分分析(PCA)
PCA是一种降维的方法,用于将样本从较高的N维投影到较低的K维,PCA认为最好的K维空间是将样本点转换为K维后,每一维的样本方差都很大,方差较大保证了样本点在K维空间构成的超平面上的投影能尽可能的分开。那么如何能找到符合条件的K维空间了?下面以将样本投影到某一维为上为例: 首先对所有的样本进行中心化,即将样本减去他们的均值,上图中XiXiX_{i}为其中一个样本点,将XiXiX_{i...
2018-08-22 20:35:31 290
原创 梯度下降算法
一.梯度下降算法的推导在深度网络的训练过程中,为了使损失尽可能的小,经常使用梯度下降算法训练网络,为什么沿着负梯度的方向更新权值就能使损失值越来越小了,下面给出梯度下降算法的简要推导。 已知函数f(x),当前x取值x0x0x_0,另x1=x0+λn⃗ x1=x0+λn→x_{1}=x_{0}+\lambda\vec n,则: f(x1)=f(x0+λn⃗ )f(x1...
2018-08-21 16:25:54 670
原创 贝叶斯分类器
一.贝叶斯分类器机器学习所要实现的是基于有限的训练样本尽可能准确的估计出后验概率,机器学习模型一般分为判别模型和生成模型。判别模型,给定x,直接建模P(c|x)来预测类别C,如决策树,BP神经网络,支持向量机等。生成模型先对联合概率分布P(x,c)建模,再由此获得P(c|x),贝叶斯分类器就是一种判别模型。贝叶斯分类器分为3种:朴素贝叶斯分类器:不考虑属性间的依赖性;半朴素贝叶斯分类器:考...
2018-08-20 21:32:18 429
原创 python创建二维数组
写代码的时候需要使用python创建二维数组:num_list = [ [0]*5 ]*2print(num_list)输出:[[0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]看输出觉得这种方法是对的,结果程序出现了错误,经过分析,这种创建二维数组的方式存在问题num_list[0][0] = 1print(num_list)输出:[[1, 0, 0,...
2018-08-17 18:07:25 99076 6
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人