训练营打卡Day24

训练营打卡Day24

回溯法

回溯法,又称回溯搜索法,是一种搜索方法,常用于解决树形或图形问题。回溯法通常使用递归来实现,在递归过程中不断尝试各种可能的解决方案,如果发现当前的解决方案不可行,就回溯到上一步,换一种方案继续尝试。回溯法可以用来解决一些复杂的问题,例如八皇后问题、迷宫问题等。

回溯法模板

  • 回溯函数模板返回值以及参数
  • 回溯函数终止条件
  • 回溯搜索的遍历过程

题61:77. 组合

思路

回溯算法求组合的问题:

  • 首先定义了一个二维数组 result 和一个一维数组 path,用于存储结果和每一次搜索的组合。然后定义了一个函数 backTrack,该函数的三个参数分别为:
    • n:数字的范围,即 1 到 n。
    • k:组合中数字的个数。
    • index:当前搜索的起点。
  • 在函数内部,首先判断 path 中数字的个数是否已经达到了 k,如果是,将当前的组合存入 result 并返回。
  • 否则,使用一个循环从 index 开始枚举到 n - (k - path.size()) + 1 的数字,将它们加入 path 并递归调用 backTrack 函数,最后再将它们从 path 中弹出。
  • 最后,在 combine 函数中调用 backTrack 函数并返回 result 即可。

代码

class Solution {
public:
    vector<vector<int>>result;
    vector<int>path;

    void backTrack(int n, int k, int index)
    {
        if(path.size() == k)
        {
            result.push_back(path);
            return;
        }

        for(int i = index; i <= n - (k - path.size()) + 1 ;i++)
        {
            path.push_back(i);
            backTrack(n, k, i+1);
            path.pop_back();
        }
    }

    vector<vector<int>> combine(int n, int k) {
        backTrack(n, k, 1);
        return result;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值