训练营打卡Day24
回溯法
回溯法,又称回溯搜索法,是一种搜索方法,常用于解决树形或图形问题。回溯法通常使用递归来实现,在递归过程中不断尝试各种可能的解决方案,如果发现当前的解决方案不可行,就回溯到上一步,换一种方案继续尝试。回溯法可以用来解决一些复杂的问题,例如八皇后问题、迷宫问题等。
回溯法模板
- 回溯函数模板返回值以及参数
- 回溯函数终止条件
- 回溯搜索的遍历过程
题61:77. 组合
思路
回溯算法求组合的问题:
- 首先定义了一个二维数组 result 和一个一维数组 path,用于存储结果和每一次搜索的组合。然后定义了一个函数 backTrack,该函数的三个参数分别为:
- n:数字的范围,即 1 到 n。
- k:组合中数字的个数。
- index:当前搜索的起点。
- 在函数内部,首先判断 path 中数字的个数是否已经达到了 k,如果是,将当前的组合存入 result 并返回。
- 否则,使用一个循环从 index 开始枚举到 n - (k - path.size()) + 1 的数字,将它们加入 path 并递归调用 backTrack 函数,最后再将它们从 path 中弹出。
- 最后,在 combine 函数中调用 backTrack 函数并返回 result 即可。
代码
class Solution {
public:
vector<vector<int>>result;
vector<int>path;
void backTrack(int n, int k, int index)
{
if(path.size() == k)
{
result.push_back(path);
return;
}
for(int i = index; i <= n - (k - path.size()) + 1 ;i++)
{
path.push_back(i);
backTrack(n, k, i+1);
path.pop_back();
}
}
vector<vector<int>> combine(int n, int k) {
backTrack(n, k, 1);
return result;
}
};