前言
最近一部根据真实事件改编的《中国医生》正在火热上映,感动了无数观众,更获钟南山院士高度评价:“真正体现了中国医生的良心、责任、决心、行动!”
影片以金银潭医院为核心故事背景,将抗疫中各地发生的真人真事浓缩凝练,全景式还原记录了波澜壮阔、艰苦卓绝的抗疫斗争。
网友也对《中国医生》原型展开热烈讨论,关于《中国医生》的话题在多个平台登上热搜,今天我们就通过抓取近4万条评论数据,看看电影观众们对这部电影的评价究竟如何?
一、核心功能设计
总体来说,我们需要先从猫眼电影爬取《中国医生》的影评数据,并将这些数据进行可视化分析展示。
拆解需求,大致可以整理出我们需要分为以下几步完成:
- 通过爬虫获取猫眼APP的评论数据,包括用户名,用户城市,评论内容,星级打分,评论时间等。
- 对获取的评论数据进行预处理,获取用户对于电影的星级评分,并通过饼图进行可视化显示。
- 根据评论数据中的城市进行观影用户区域分布可视化。
- 对影评内容进行词云绘制。
二、实现步骤
1. 爬取数据
首先我们需要获取猫眼APP上的评论数据,通过分析发现,猫眼APP的评论数据接口为:https://m.maoyan.com/mmdb/comments/movie/1337700.json_v_=yes&offset=0&startTime=2021-07-14%2022%3A25%3A03。
根据对数据分析,返回的json格式数据,可以发现:
- 1337700就是代表《中国医生》电影的id
- offset表示偏移量
- startTime表示获取评论的起始时间
- cmts表示评论,每次获取15条,offset偏移量是指每次获取评论时的起始索引,向后取15条
- cmts中有我们需要的用户id、用户名、城市名、评论内容、评论星级分数、评论时间等信息
网页结构我们上面已经分析好了,那么我们就可以来动手爬取我们所需要的数据了。获取到所有的数据资源之后,可以把这些数据保存下来。
获取数据:
# 获取数据,根据url获取
def get_data(url):
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.123 Safari/537.36',
}
response = requests.get(url=url, headers=headers)
html_data = response.text
# print(html_data)
return html_data
处理数据:
# 处理数据
def parse_data(html):
data = json.loads(html)['cmts'] # 将str转换为json
comments = []
for item in data:
comment = {
'id': item['id'],
'nickName': item['nickName'],
'cityName': item['cityName'] if 'cityName' in item else '', # 处理cityName不存在的情况
'content': item['content'].replace('\n', ' ', 10), # 处理评论内容换行的情况
'score': item['score'],
'startTime': item['startTime']
}
comments.append(comment)
return comments
存储数据:
# 存储数据,存储到文本文件
def save_to_data():
start_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S') # 获取当前时间,从当前时间向前获取
end_time = '2021-07-09 00:00:00'
while start_time > end_time:
url = 'https://m.maoyan.com/mmdb/comments/movie/1337700.json?_v_=yes&offset=0&startTime=' + start_time.replace(' ', '%20')
html = None
try:
html = get_data(url)
except Exception as e:
# 当请求过于频繁时,服务器会拒绝连接,实际上是服务器的反爬虫策略
time.sleep(0.5)
html =