一起用Python做个车牌自动识别系统,好玩又实用!

Python 专栏收录该内容
36 篇文章 153 订阅

前言

前段时间,用PyQt5写了两篇文章,关于Python自制一款炫酷音乐播放器自定义桌面动画挂件。有粉丝问我,为什么要用PyQt5?之前没接触过PyQt5,能不能多分享一些这方面的开发案例?

今天就继续给大家分享一个实战案例,带大家一起用Python的PyQt5开发一个车牌自动识别系统!

首先一起来看看最终实现的车牌识别系统效果图:在这里插入图片描述
下面,我们就开始介绍如何实现这款自动车牌识别系统。

直接跳到文末获取粉丝专属福利。

一、核心功能设计

总体来说,我们首先要进行UI界面构建设计,根据车牌识别系统功能进行画面排版布局;其次我们的这款车牌识别系统的主要功能车辆图片读取识别显示、图片中车牌ROI区域获取、车牌识别结果输出显示。

对于结果输出显示,我们主要包含了读取图片名称、读取录入时间、识别车牌号码、识别车牌颜色、识别车牌所属地。最后我们还可以将车牌识别系统的数据信息导出本地存储。

拆解需求,大致可以整理出核心功能如下:

  • UI设计排版布局

    • 左侧区域进行识别信息显示,包含图片名称、读取录入时间、识别车牌号码、识别车牌颜色、识别车牌所属地信息
    • 右侧可以分成3个区域,顶部区域包含窗体最小化,最大化,关闭功能;中间区域显示读取车辆图片;底部区域包含车牌显示区域、图片读取、车牌信息存储功能
  • 车牌识别

    • 通过读取图片进行车牌区域提取输出
    • 车牌自动识别结果输出
  • 车牌信息显示存储

    • 根据自动识别结果对车牌各类信息显示
    • 对录入识别的车辆车牌识别信息存储

二、实现步骤

1. UI设计排版布局

根据车牌识别需要的功能,首先进行UI布局设计,我们这次还是使用的pyqt5。核心设计代码如下:

# author:CSDN-Dragon少年
def setupUi(self, MainWindow):
    MainWindow.setObjectName("MainWindow")
    MainWindow.resize(1213, 670)
    MainWindow.setFixedSize(1213, 670)  # 设置窗体固定大小
    MainWindow.setToolButtonStyle(QtCore.Qt.ToolButtonIconOnly)
    self.centralwidget = QtWidgets.QWidget(MainWindow)
    self.centralwidget.setObjectName("centralwidget")
    self.scrollArea = QtWidgets.QScrollArea(self.centralwidget)
    self.scrollArea.setGeometry(QtCore.QRect(690, 40, 511, 460))
    self.scrollArea.setWidgetResizable(True)
    self.scrollArea.setObjectName("scrollArea")
    self.scrollAreaWidgetContents = QtWidgets.QWidget()
    self.scrollAreaWidgetContents.setGeometry(QtCore.QRect(0, 0, 500, 489))
    self.scrollAreaWidgetContents.setObjectName("scrollAreaWidgetContents")
    self.label_0 = QtWidgets.QLabel(self.scrollAreaWidgetContents)
    self.label_0.setGeometry(QtCore.QRect(10, 10, 111, 20))
    font = QtGui.QFont()
    font.setPointSize(11)
    self.label_0.setFont(font)
    self.label_0.setObjectName("label_0")
    self.label = QtWidgets.QLabel(self.scrollAreaWidgetContents)
    self.label.setGeometry(QtCore.QRect(10, 40, 481, 420))
    self.label.setObjectName("label")
    self.label.setAlignment(Qt.AlignCenter)
    self.scrollArea.setWidget(self.scrollAreaWidgetContents)
    self.scrollArea_2 = QtWidgets.QScrollArea(self.centralwidget)
    self.scrollArea_2.setGeometry(QtCore.QRect(10, 10, 671, 631))
    self.scrollArea_2.setWidgetResizable(True)
    self.scrollArea_2.setObjectName("scrollArea_2")
    self.scrollAreaWidgetContents_1 = QtWidgets.QWidget()
    self.scrollAreaWidgetContents_1.setGeometry(QtCore.QRect(0, 0, 669, 629))
    self.scrollAreaWidgetContents_1.setObjectName("scrollAreaWidgetContents_1")
    self.label_1 = QtWidgets.QLabel(self.scrollAreaWidgetContents_1)
    self.label_1.setGeometry(QtCore.QRect(10, 10, 111, 20))
    font = QtGui.QFont()
    font.setPointSize(11)
    self.label_1.setFont(font)
    self.label_1.setObjectName("label_1")
    self.tableWidget = QtWidgets.QTableWidget(self.scrollAreaWidgetContents_1)
    self.tableWidget.setGeometry(QtCore.QRect(10, 40, 651, 581))  # 581))
    self.tableWidget.setObjectName("tableWidget")
    self.tableWidget.setColumnCount(5)
    self.tableWidget.setColumnWidth(0, 140)  # 设置1列的宽度
    self.tableWidget.setColumnWidth(1, 130)  # 设置2列的宽度
    self.tableWidget.setColumnWidth(2, 110)  # 设置3列的宽度
    self.tableWidget.setColumnWidth(3, 90)  # 设置4列的宽度
    self.tableWidget.setColumnWidth(4, 181)  # 设置5列的宽度
    self.tableWidget.setHorizontalHeaderLabels(["图片名称", "录入时间", "车牌号码", "车牌类型", "车牌信息"])
    self.tableWidget.setRowCount(self.RowLength)
    self.tableWidget.verticalHeader().setVisible(False)  # 隐藏垂直表头)
    self.tableWidget.setEditTriggers(QAbstractItemView.NoEditTriggers)
    self.tableWidget.raise_()
    self.scrollArea_2.setWidget(self.scrollAreaWidgetContents_1)
    self.scrollArea_3 = QtWidgets.QScrollArea(self.centralwidget)
    self.scrollArea_3.setGeometry(QtCore.QRect(690, 510, 341, 131))
    self.scrollArea_3.setWidgetResizable(True)
    self.scrollArea_3.setObjectName("scrollArea_3")
    self.scrollAreaWidgetContents_3 = QtWidgets.QWidget()
    self.scrollAreaWidgetContents_3.setGeometry(QtCore.QRect(0, 0, 339, 129))
    self.scrollAreaWidgetContents_3.setObjectName("scrollAreaWidgetContents_3")
    self.label_2 = QtWidgets.QLabel(self.scrollAreaWidgetContents_3)
    self.label_2.setGeometry(QtCore.QRect(10, 10, 111, 20))
    font = QtGui.QFont()
    font.setPointSize(11)
    self.label_2.setFont(font)
    self.label_2.setObjectName("label_2")
    self.label_3 = QtWidgets.QLabel(self.scrollAreaWidgetContents_3)
    self.label_3.setGeometry(QtCore.QRect(10, 40, 321, 81))
    self.label_3.setObjectName("label_3")
    self.scrollArea_3.setWidget(self.scrollAreaWidgetContents_3)
    self.scrollArea_4 = QtWidgets.QScrollArea(self.centralwidget)
    self.scrollArea_4.setGeometry(QtCore.QRect(1040, 510, 161, 131))
    self.scrollArea_4.setWidgetResizable(True)
    self.scrollArea_4.setObjectName("scrollArea_4")
    self.scrollAreaWidgetContents_4 = QtWidgets.QWidget()
    self.scrollAreaWidgetContents_4.setGeometry(QtCore.QRect(0, 0, 159, 129))
    self.scrollAreaWidgetContents_4.setObjectName("scrollAreaWidgetContents_4")
    self.pushButton_2 = QtWidgets.QPushButton(self.scrollAreaWidgetContents_4)
    self.pushButton_2.setGeometry(QtCore.QRect(20, 50, 121, 31))
    self.pushButton_2.setObjectName("pushButton_2")
    self.pushButton = QtWidgets.QPushButton(self.scrollAreaWidgetContents_4)
    self.pushButton.setGeometry(QtCore.QRect(20, 90, 121, 31))
    self.pushButton.setObjectName("pushButton")
    self.label_4 = QtWidgets.QLabel(self.scrollAreaWidgetContents_4)
    self.label_4.setGeometry(QtCore.QRect(10, 10, 111, 20))
    font = QtGui.QFont()
    font.setPointSize(11)
    self.label_4.setFont(font)
    self.label_4.setObjectName("label_4")
    self.scrollArea_4.setWidget(self.scrollAreaWidgetContents_4)
    MainWindow.setCentralWidget(self.centralwidget)
    self.statusbar = QtWidgets.QStatusBar(MainWindow)
    self.statusbar.setObjectName("statusbar")
    MainWindow.setStatusBar(self.statusbar)
    self.retranslateUi(MainWindow)
    QtCore.QMetaObject.connectSlotsByName(MainWindow)
    self.retranslateUi(MainWindow)
    QtCore.QMetaObject.connectSlotsByName(MainWindow)
    self.pushButton.clicked.connect(self.__openimage)  # 设置点击事件
    self.pushButton.setStyleSheet('''QPushButton{background:#222225;border-radius:5px;}QPushButton:hover{background:#2B2B2B;}''')
    self.pushButton_2.clicked.connect(self.__writeFiles)  # 设置点击事件
    self.pushButton_2.setStyleSheet('''QPushButton{background:#222225;border-radius:5px;}QPushButton:hover{background:#2B2B2B;}''')
    self.retranslateUi(MainWindow)
    self.close_widget = QtWidgets.QWidget(self.centralwidget)
    self.close_widget.setGeometry(QtCore.QRect(1130, 0, 90, 50))
    self.close_widget.setObjectName("close_widget")
    self.close_layout = QGridLayout()  # 创建左侧部件的网格布局层
    self.close_widget.setLayout(self.close_layout)  # 设置左侧部件布局为网格
    self.left_close = QPushButton("")  # 关闭按钮
    self.left_close.clicked.connect(self.close)
    self.left_visit = QPushButton("")  # 空白按钮
    self.left_visit.clicked.connect(MainWindow.big)
    self.left_mini = QPushButton("")  # 最小化按钮
    self.left_mini.clicked.connect(MainWindow.mini)
    self.close_layout.addWidget(self.left_mini, 0, 0, 1, 1)
    self.close_layout.addWidget(self.left_close, 0, 2, 1, 1)
    self.close_layout.addWidget(self.left_visit, 0, 1, 1, 1)
    self.left_close.setFixedSize(15, 15)  # 设置关闭按钮的大小
    self.left_visit.setFixedSize(15, 15)  # 设置按钮大小
    self.left_mini.setFixedSize(15, 15)  # 设置最小化按钮大小
    self.left_close.setStyleSheet(
        '''QPushButton{background:#F76677;border-radius:5px;}QPushButton:hover{background:red;}''')
    self.left_visit.setStyleSheet(
        '''QPushButton{background:#F7D674;border-radius:5px;}QPushButton:hover{background:yellow;}''')
    self.left_mini.setStyleSheet(
        '''QPushButton{background:#6DDF6D;border-radius:5px;}QPushButton:hover{background:green;}''')

    QtCore.QMetaObject.connectSlotsByName(MainWindow)
    self.ProjectPath = os.getcwd()  # 获取当前工程文件位置
    self.scrollAreaWidgetContents.setStyleSheet(sc)
    self.scrollAreaWidgetContents_3.setStyleSheet(sc)
    self.scrollAreaWidgetContents_4.setStyleSheet(sc)
    b =             '''
         color:white;
         background:#2B2B2B;
        '''
    self.label_0.setStyleSheet(b)
    self.label_1.setStyleSheet(b)
    self.label_2.setStyleSheet(b)
    self.label_3.setStyleSheet(b)
    MainWindow.setWindowOpacity(0.95)  # 设置窗口透明度
    MainWindow.setAttribute(Qt.WA_TranslucentBackground)
    MainWindow.setWindowFlag(Qt.FramelessWindowHint)  # 隐藏边框

# author:CSDN-Dragon少年
def retranslateUi(self, MainWindow):
    _translate = QtCore.QCoreApplication.translate
    MainWindow.setWindowTitle(_translate("MainWindow", "车牌识别系统"))
    self.label_0.setText(_translate("MainWindow", "原始图片:"))
    self.label.setText(_translate("MainWindow", ""))
    self.label_1.setText(_translate("MainWindow", "识别结果:"))
    self.label_2.setText(_translate("MainWindow", "车牌区域:"))
    self.label_3.setText(_translate("MainWindow", ""))
    self.pushButton.setText(_translate("MainWindow", "打开文件"))
    self.pushButton_2.setText(_translate("MainWindow", "导出数据"))
    self.label_4.setText(_translate("MainWindow", "事件:"))
    self.scrollAreaWidgetContents_1.show()

UI实现效果如下:
在这里插入图片描述

2. 车牌识别

接下来我们需要实现两个核心功能,包括获取车牌ROI区域车牌自动识别功能。

车牌ROI区域提取:

根据读取的车辆图片,预处理进行车牌ROI区域提取,主要通过Opencv的图像处理相关知识点来完成。主要包括对图像去噪、二值化、边缘轮廓提取、矩形区域矫正、蓝绿黄车牌颜色定位识别。核心代码如下:

# author:CSDN-Dragon少年
# 预处理
def pretreatment(self, car_pic):
    if type(car_pic) == type(""):
        img = self.__imreadex(car_pic)
    else:
        img = car_pic
    pic_hight, pic_width = img.shape[:2]

    if pic_width > self.MAX_WIDTH:
        resize_rate = self.MAX_WIDTH / pic_width
        img = cv2.resize(img, (self.MAX_WIDTH, int(pic_hight * resize_rate)),
                         interpolation=cv2.INTER_AREA)  # 图片分辨率调整
    blur = self.cfg["blur"]
    # 高斯去噪
    if blur > 0:
        img = cv2.GaussianBlur(img, (blur, blur), 0)
    oldimg = img
    img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    kernel = np.ones((20, 20), np.uint8)
    img_opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)  # 开运算
    img_opening = cv2.addWeighted(img, 1, img_opening, -1, 0);  # 与上一次开运算结果融合
    # cv2.imshow('img_opening', img_opening)

    # 找到图像边缘
    ret, img_thresh = cv2.threshold(img_opening, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)  # 二值化
    img_edge = cv2.Canny(img_thresh, 100, 200)
    # cv2.imshow('img_edge', img_edge)

    # 使用开运算和闭运算让图像边缘成为一个整体
    kernel = np.ones((self.cfg["morphologyr"], self.cfg["morphologyc"]), np.uint8)
    img_edge1 = cv2.morphologyEx(img_edge, cv2.MORPH_CLOSE, kernel)  # 闭运算
    img_edge2 = cv2.morphologyEx(img_edge1, cv2.MORPH_OPEN, kernel)  # 开运算
    # cv2.imshow('img_edge2', img_edge2)
    # cv2.imwrite('./edge2.png', img_edge2)
    # 查找图像边缘整体形成的矩形区域,可能有很多,车牌就在其中一个矩形区域中
    image, contours, hierarchy = cv2.findContours(img_edge2, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    contours = [cnt for cnt in contours if cv2.contourArea(cnt) > self.Min_Area]
    # 逐个排除不是车牌的矩形区域
    car_contours = []
    for cnt in contours:
        # 框选 生成最小外接矩形 返回值(中心(x,y), (宽,高), 旋转角度)
        rect = cv2.minAreaRect(cnt)
        # print('宽高:',rect[1])
        area_width, area_height = rect[1]
        # 选择宽大于高的区域
        if area_width < area_height:
            area_width, area_height = area_height, area_width
        wh_ratio = area_width / area_height
        # print('宽高比:',wh_ratio)
        # 要求矩形区域长宽比在2到5.5之间,2到5.5是车牌的长宽比,其余的矩形排除
        if wh_ratio > 2 and wh_ratio < 5.5:
            car_contours.append(rect)
            box = cv2.boxPoints(rect)
            box = np.int0(box)
    # 矩形区域可能是倾斜的矩形,需要矫正,以便使用颜色定位
    card_imgs = []
    for rect in car_contours:
        if rect[2] > -1 and rect[2] < 1:  # 创造角度,使得左、高、右、低拿到正确的值
            angle = 1
        else:
            angle = rect[2]
        rect = (rect[0], (rect[1][0] + 5, rect[1][1] + 5), angle)  # 扩大范围,避免车牌边缘被排除
        box = cv2.boxPoints(rect)
        heigth_point = right_point = [0, 0]
        left_point = low_point = [pic_width, pic_hight]
        for point in box:
            if left_point[0] > point[0]:
                left_point = point
            if low_point[1] > point[1]:
                low_point = point
            if heigth_point[1] < point[1]:
                heigth_point = point
            if right_point[0] < point[0]:
                right_point = point
        if left_point[1] <= right_point[1]:  # 正角度
            new_right_point = [right_point[0], heigth_point[1]]
            pts2 = np.float32([left_point, heigth_point, new_right_point])  # 字符只是高度需要改变
            pts1 = np.float32([left_point, heigth_point, right_point])
            M = cv2.getAffineTransform(pts1, pts2)
            dst = cv2.warpAffine(oldimg, M, (pic_width, pic_hight))
            self.__point_limit(new_right_point)
            self.__point_limit(heigth_point)
            self.__point_limit(left_point)
            card_img = dst[int(left_point[1]):int(heigth_point[1]), int(left_point[0]):int(new_right_point[0])]
            card_imgs.append(card_img)

        elif left_point[1] > right_point[1]:  # 负角度

            new_left_point = [left_point[0], heigth_point[1]]
            pts2 = np.float32([new_left_point, heigth_point, right_point])  # 字符只是高度需要改变
            pts1 = np.float32([left_point, heigth_point, right_point])
            M = cv2.getAffineTransform(pts1, pts2)
            dst = cv2.warpAffine(oldimg, M, (pic_width, pic_hight))
            self.__point_limit(right_point)
            self.__point_limit(heigth_point)
            self.__point_limit(new_left_point)
            card_img = dst[int(right_point[1]):int(heigth_point[1]), int(new_left_point[0]):int(right_point[0])]
            card_imgs.append(card_img)
    #使用颜色定位,排除不是车牌的矩形,目前只识别蓝、绿、黄车牌
    colors = []
    for card_index, card_img in enumerate(card_imgs):
        green = yellow = blue = black = white = 0
        try:
            # 有转换失败的可能,原因来自于上面矫正矩形出错
            card_img_hsv = cv2.cvtColor(card_img, cv2.COLOR_BGR2HSV)
        except:
            print('BGR转HSV失败')
            card_imgs = colors = None
            return card_imgs, colors

        if card_img_hsv is None:
            continue
        row_num, col_num = card_img_hsv.shape[:2]
        card_img_count = row_num * col_num

        # 确定车牌颜色
        for i in range(row_num):
            for j in range(col_num):
                H = card_img_hsv.item(i, j, 0)
                S = card_img_hsv.item(i, j, 1)
                V = card_img_hsv.item(i, j, 2)
                if 11 < H <= 34 and S > 34:  # 图片分辨率调整
                    yellow += 1
                elif 35 < H <= 99 and S > 34:  # 图片分辨率调整
                    green += 1
                elif 99 < H <= 124 and S > 34:  # 图片分辨率调整
                    blue += 1

                if 0 < H < 180 and 0 < S < 255 and 0 < V < 46:
                    black += 1
                elif 0 < H < 180 and 0 < S < 43 and 221 < V < 225:
                    white += 1
        color = "no"
        # print('黄:{:<6}绿:{:<6}蓝:{:<6}'.format(yellow,green,blue))

        limit1 = limit2 = 0
        if yellow * 2 >= card_img_count:
            color = "yellow"
            limit1 = 11
            limit2 = 34  # 有的图片有色偏偏绿
        elif green * 2 >= card_img_count:
            color = "green"
            limit1 = 35
            limit2 = 99
        elif blue * 2 >= card_img_count:
            color = "blue"
            limit1 = 100
            limit2 = 124  # 有的图片有色偏偏紫
        elif black + white >= card_img_count * 0.7:
            color = "bw"
        # print(color)
        colors.append(color)
        # print(blue, green, yellow, black, white, card_img_count)
        if limit1 == 0:
            continue

        # 根据车牌颜色再定位,缩小边缘非车牌边界
        xl, xr, yh, yl = self.accurate_place(card_img_hsv, limit1, limit2, color)
        if yl == yh and xl == xr:
            continue
        need_accurate = False
        if yl >= yh:
            yl = 0
            yh = row_num
            need_accurate = True
        if xl >= xr:
            xl = 0
            xr = col_num
            need_accurate = True
        card_imgs[card_index] = card_img[yl:yh, xl:xr] \
            if color != "green" or yl < (yh - yl) // 4 else card_img[yl - (yh - yl) // 4:yh, xl:xr]
        if need_accurate:  # 可能x或y方向未缩小,需要再试一次
            card_img = card_imgs[card_index]
            card_img_hsv = cv2.cvtColor(card_img, cv2.COLOR_BGR2HSV)
            xl, xr, yh, yl = self.accurate_place(card_img_hsv, limit1, limit2, color)
            if yl == yh and xl == xr:
                continue
            if yl >= yh:
                yl = 0
                yh = row_num
            if xl >= xr:
                xl = 0
                xr = col_num
        card_imgs[card_index] = card_img[yl:yh, xl:xr] \
            if color != "green" or yl < (yh - yl) // 4 else card_img[yl - (yh - yl) // 4:yh, xl:xr]
    # cv2.imshow("result", card_imgs[0])
    # cv2.imwrite('1.jpg', card_imgs[0])
    # print('颜色识别结果:' + colors[0])
    return card_imgs, colors

至此我们就可以输出车牌ROI区域和车牌颜色了,效果如下:
在这里插入图片描述
车牌自动识别:

车牌识别博主自己写了一个基于Opencv和SVM的识别系统,由于代码篇幅较长,本篇不进行展示(感兴趣的可以私信博主获取源码)。本篇介绍调用百度AI提供的车牌识别接口百度AI开放平台链接,识别效果也非常不错。
在这里插入图片描述
这里面我们可以创建一个车牌识别的应用,其中的API Key及Secret Key后面我们调用车牌识别检测接口时会用到。
在这里插入图片描述
我们可以看到官方提供的帮助文档,介绍了如何调用请求URL数据格式,向API服务地址使用POST发送请求,必须在URL中带上参数access_token,可通过后台的API Key和Secret Key生成。这里面的API Key和Secret Key就是我们上面提到的。
在这里插入图片描述
接下来我们看看调用车牌识别接口代码示例。
在这里插入图片描述
那我们如何获取识别的车牌号码呢?API文档可以看到里面有个words_result字典 ,其中的color代表车牌颜色 number代表车牌号码 。这样我就可以知道识别的车牌颜色和车牌号了。

在这里插入图片描述
车牌识别的接口调用流程基本已经清楚了,下面就可以进行代码实现了。

# author:CSDN-Dragon少年
def get_token(self):
    host = 'https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id=' + self.client_id + '&client_secret=' + self.client_secret
    response = requests.get(host)
    if response:
        token_info = response.json()
        token_key = token_info['access_token']
    return token_key

# author:CSDN-Dragon少年
def get_license_plate(self, car_pic):
    result = {}
    card_imgs, colors = self.pretreatment(car_pic)
    request_url = "https://aip.baidubce.com/rest/2.0/ocr/v1/license_plate"
    # 二进制方式打开图片文件
    f = open(car_pic, 'rb')
    img = base64.b64encode(f.read())
    params = {"image": img}
    access_token = self.get_token()
    request_url = request_url + "?access_token=" + access_token
    headers = {'content-type': 'application/x-www-form-urlencoded'}
    response = requests.post(request_url, data=params, headers=headers)
    if response:
        print(response.json())
        license_result = response.json()['words_result']['number']
        card_color = response.json()['words_result']['color']
        if license_result != []:
            result['InputTime'] = time.strftime("%Y-%m-%d %H:%M:%S")
            result['Type'] = self.cardtype[card_color]
            result['Picture'] = card_imgs[0]
            result['Number'] = ''.join(license_result[:2]) + '·' + ''.join(license_result[2:])
            try:
                result['From'] = ''.join(self.Prefecture[license_result[0]][license_result[1]])
            except:
                result['From'] = '未知'
            return result
    else:
        return None

这样我们就可以拿到车牌颜色和车牌号码了,效果如下:

在这里插入图片描述

3. 车牌信息显示存储

3.1 车牌信息显示:
# author:CSDN-Dragon少年
def __show(self, result, FileName):
    # 显示表格
    self.RowLength = self.RowLength + 1
    if self.RowLength > 18:
        self.tableWidget.setColumnWidth(5, 157)
    self.tableWidget.setRowCount(self.RowLength)
    self.tableWidget.setItem(self.RowLength - 1, 0, QTableWidgetItem(FileName))
    self.tableWidget.setItem(self.RowLength - 1, 1, QTableWidgetItem(result['InputTime']))
    self.tableWidget.setItem(self.RowLength - 1, 2, QTableWidgetItem(result['Number']))
    self.tableWidget.setItem(self.RowLength - 1, 3, QTableWidgetItem(result['Type']))
    if result['Type'] == '蓝色牌照':
        self.tableWidget.item(self.RowLength - 1, 3).setBackground(QBrush(QColor(3, 128, 255)))
    elif result['Type'] == '绿色牌照':
        self.tableWidget.item(self.RowLength - 1, 3).setBackground(QBrush(QColor(98, 198, 148)))
    elif result['Type'] == '黄色牌照':
        self.tableWidget.item(self.RowLength - 1, 3).setBackground(QBrush(QColor(242, 202, 9)))
    self.tableWidget.setItem(self.RowLength - 1, 4, QTableWidgetItem(result['From']))
    self.tableWidget.item(self.RowLength - 1, 4).setBackground(QBrush(QColor(255, 255, 255)))
    # 显示识别到的车牌位置
    size = (int(self.label_3.width()), int(self.label_3.height()))
    shrink = cv2.resize(result['Picture'], size, interpolation=cv2.INTER_AREA)
    shrink = cv2.cvtColor(shrink, cv2.COLOR_BGR2RGB)
    self.QtImg = QtGui.QImage(shrink[:], shrink.shape[1], shrink.shape[0], shrink.shape[1] * 3,
                              QtGui.QImage.Format_RGB888)
    self.label_3.setPixmap(QtGui.QPixmap.fromImage(self.QtImg))

效果如下:
在这里插入图片描述

3.2 信息导出存储:
# author:CSDN-Dragon少年
def __writexls(self, DATA, path):
    wb = xlwt.Workbook();
    ws = wb.add_sheet('Data');
    # DATA.insert(0, ['文件名称','录入时间', '车牌号码', '车牌类型', '车牌信息'])
    for i, Data in enumerate(DATA):
        for j, data in enumerate(Data):
            ws.write(i, j, data)
    wb.save(path)
    QMessageBox.information(None, "成功", "数据已保存!", QMessageBox.Yes)
def __writecsv(self, DATA, path):
    f = open(path, 'w')
    # DATA.insert(0, ['文件名称','录入时间', '车牌号码', '车牌类型', '车牌信息'])
    for data in DATA:
        f.write((',').join(data) + '\n')
    f.close()
    QMessageBox.information(None, "成功", "数据已保存!", QMessageBox.Yes)

def __writeFiles(self):
    path, filetype = QFileDialog.getSaveFileName(None, "另存为", self.ProjectPath,
                                                 "Excel 工作簿(*.xls);;CSV (逗号分隔)(*.csv)")
    if path == "":  # 未选择
        return
    if filetype == 'Excel 工作簿(*.xls)':
        self.__writexls(self.Data, path)
    elif filetype == 'CSV (逗号分隔)(*.csv)':
        self.__writecsv(self.Data, path)

效果如下:
在这里插入图片描述
导出车牌信息数据如下:
在这里插入图片描述
至此,整个车牌自动识别系统就完成了~今天我们就到这里,明天继续努力!
源码及数据已上传,关注文末公众号回复【源码】即可获取完整源码

Python往期精彩:

©️2021 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值