转换成BST的两道题目

概述

108. 将有序数组转换为二叉搜索树
109. 有序链表转换二叉搜索树
延申题目:BST为什么是平衡的
1382. 将二叉搜索树变平衡

题目

108. 将有序数组转换为二叉搜索树

二分建树

直接二分建树就好

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* sortedArrayToBST(vector<int>& nums) {
        if(nums.size()==0)return NULL;
        return func(nums,0,nums.size()-1);
    }
    //功能:在给定的数组和上下标,构建一颗平衡的二叉树并放回
    TreeNode* func(vector<int>& nums,int left,int right){
        if(left>right)return NULL;
        int mid=left+(right-left)/2;
        // int mid=(right+left)/2;
        TreeNode* root=new TreeNode(nums[mid]);
        root->left=func(nums,left,mid-1);
        root->right=func(nums,mid+1,right);
        return root;
    }
};

109. 有序链表转换二叉搜索树

暴力

沿用上一题的思路,我们把链表的值保存下来然后复用上一题的代码就行

class Solution:
    def sortedListToBST(self, head: ListNode) -> TreeNode:
        lst = []
        p = head

        while p:
            lst.append(p.val)
            p = p.next
            
        def createTree(left,right):
            if left > right:
                return None            
            mid = (left+right)//2
            root = TreeNode(lst[mid])
            root.left = createTree(left,mid-1)
            root.right = createTree(mid+1,right)
            return root
        
        return createTree(0,len(lst)-1)

时间复杂度 O ( n ) O(n) O(n)
空间复杂度 O ( n ) O(n) O(n)

快慢指针+递归

快慢指针走到链表的中间结点,然后链表中间结点一定是树根,接着对左右结点进行建树即可
需要注意的是这里是 [ s t a r t , e n d ) [start,end) [start,end)区间,然后我们对start.next = end的情况进行特殊判断

class Solution:
    def sortedListToBST(self, head: ListNode) -> TreeNode:
        if not head:
            return None
        if not head.next:
            return TreeNode(head.val)
            
        # [start,end) => [head,None)
        def createTree(start,end):
            if start == end:
                return None
            # 特殊情况,只有一个结点
            if start.next == end:
                return TreeNode(start.val)

            # find mid node 
            slow,fast = start,start
            while fast != end and fast.next != end:
                fast = fast.next.next
                slow = slow.next

            # create Tree
            root = TreeNode(slow.val)
            root.left = createTree(start,slow)
            root.right = createTree(slow.next,end)
            return root
        
        return createTree(head,None)

和暴力法相比,不需要额外的存储空间,也不需要额外的遍历
时间复杂度 O ( n l o g n ) O(nlogn) O(nlogn),通过主定理计算得出 T ( n ) = 2 ⋅ T ( n / 2 ) + O ( n ) T(n)=2⋅T(n/2)+O(n) T(n)=2T(n/2)+O(n)
空间复杂度 O ( l o g n ) O(logn) O(logn)

分治+中序遍历优化

来自官方题解
在这里插入图片描述

class Solution:
    def sortedListToBST(self, head: ListNode) -> TreeNode:
        def getLength(head: ListNode) -> int:
            ret = 0
            while head:
                ret += 1
                head = head.next
            return ret
        
        def buildTree(left: int, right: int) -> TreeNode:
            if left > right:
                return None
            mid = (left + right + 1) // 2
            root = TreeNode()
            root.left = buildTree(left, mid - 1)
            nonlocal head
            root.val = head.val
            head = head.next
            root.right = buildTree(mid + 1, right)
            return root
        
        length = getLength(head)
        return buildTree(0, length - 1)

c++的代码可能更好理解一点

class Solution {
public:
    int getLength(ListNode* head) {
        int ret = 0;
        for (; head != nullptr; ++ret, head = head->next);
        return ret;
    }

    TreeNode* buildTree(ListNode*& head, int left, int right) {
        if (left > right) {
            return nullptr;
        }
        int mid = (left + right + 1) / 2;
        TreeNode* root = new TreeNode();
        root->left = buildTree(head, left, mid - 1);
        root->val = head->val;
        head = head->next;
        root->right = buildTree(head, mid + 1, right);
        return root;
    }

    TreeNode* sortedListToBST(ListNode* head) {
        int length = getLength(head);
        return buildTree(head, 0, length - 1);
    }
};

比较巧妙的思想,我们先新建节点,然后递归创建左右子树,按照代码的顺序,一定是碰到最左结点然后逐层返回上一级,此时的顺序刚好是链表的顺序,然后我们给root结点赋值并移动head即可
利用了BST中序遍历就是升序的性质

时间复杂度 O ( n ) O(n) O(n),由主定理计算得出 T ( n ) = 2 ∗ T ( n / 2 ) + O ( 1 ) T(n) = 2*T(n/2) + O(1) T(n)=2T(n/2)+O(1)
空间复杂度 O ( l o g n ) O(logn) O(logn)

1382. 将二叉搜索树变平衡

暴力二分

class Solution:
    def balanceBST(self, root: TreeNode) -> TreeNode:
        if not root:
            return None
        lst = []
        def visited(root):
            if not root:
                return None
            visited(root.left)
            lst.append(root.val)
            visited(root.right)

        
        def createTree(lo,hi):
            if lo>hi:
                return None
            mid = (hi+lo)//2
            root = TreeNode(lst[mid])
            root.left = createTree(lo,mid-1)
            root.right = createTree(mid+1,hi)

            return root
            
        visited(root) 
        return createTree(0,len(lst)-1)

总结

三道题目,都是让我们转换成平衡的二叉树
主要是用到二分的思想

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值