PyTorch 常用代码整理

该博客探讨了数据预处理中的one-hot编码技术,以及如何创建对称邻接矩阵。此外,还介绍了图的规范化方法,包括D^-1AD和D^-1/2AD^-1/2。文章还涉及将稀疏矩阵转换为张量的操作,并提供了计算准确率的函数。这些概念在机器学习和图神经网络中至关重要。
摘要由CSDN通过智能技术生成

生成one-hot编码

def encode_onehot(labels):
    classes = set(labels)
    classes_dict = {c: np.identity(len(classes))[i, :] for i, c in
                    enumerate(classes)}
    labels_onehot = np.array(list(map(classes_dict.get, labels)),
                             dtype=np.int32)
    return labels_onehot

创建对称的邻接矩阵,推导过程略,总之能把一个矩阵变换成对称的

# adj 是 coo_matrix
    adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)

row normalize,防止梯度消失
一般这里有两种方式
D − 1 A D^{-1}A D1A D − 1 / 2 A D − 1 / 2 D^{-1/2}AD^{-1/2} D1/2AD1/2

下面的代码是方式1

def normalize(mx):
    """Row-normalize sparse matrix"""
    rowsum = np.array(mx.sum(1))	# degree matrix
    r_inv = np.power(rowsum, -1).flatten()
    r_inv[np.isinf(r_inv)] = 0.
    r_mat_inv = sp.diags(r_inv)
    mx = r_mat_inv.dot(mx)
    return mx

coo_matrix转成tensor

def sparse_mx_to_torch_sparse_tensor(sparse_mx):
    """Convert a scipy sparse matrix to a torch sparse tensor."""
    sparse_mx = sparse_mx.tocoo().astype(np.float32)
    indices = torch.from_numpy(
        np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64))
    values = torch.from_numpy(sparse_mx.data)
    shape = torch.Size(sparse_mx.shape)
    return torch.sparse.FloatTensor(indices, values, shape)

计算acc

def accuracy(output, labels):
    preds = output.max(1)[1].type_as(labels)
    correct = preds.eq(labels).double()
    correct = correct.sum()
    return correct / len(labels)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值