求乘法逆元

密码学中经常要求某个数的乘法逆元,今天就好好学习了一下怎么求解这个数。

概念

给定一个数a与数b,求解a关于b的乘法逆元,通常记为

a*x=1(mod b)

其中x是a关于b的乘法逆元
一个数有乘法逆元的前提条件是gcd(a,b)必须等于1,也就是a与b必须是互素的。

求解

我们首先要知道怎么求出a与b之间的最大公因数
下面直接给出代码

int gcd(int a,int b)
{
	if(b==0) return a;
	else return gcd(b,a%b); 
}

这就是著名的欧几里得公式 gcd(a,b)=gcd(b,a%b),具体证明就不证了。
其次,我们现在能求出最大公因式了,下一步怎么办呢?
下面就要用到扩展欧几里得公式了
我们求a关于b的乘法逆元,实际上就是求解存在一个整数对 x,y ,使得 gcd(a,b)=ax+by。
求解出x即可
扩展上面的公式 有一个重要的结论

		设 ax1+ by1= gcd(a,b);
		bx2+ (a mod b)y2= gcd(b,a mod b);
		则:ax1+ by1= bx2+ (a mod b)y2;
		即:ax1+ by1= bx2+ (a - [a / b] * b)y2=ay2+ bx2- [a / b] * by2;
		说明: a-[a/b]*b即为mod运算。[a/b]代表取小于a/b的最大整数。
		也就是
		ax1+ by1 == ay2+ b(x2- [a / b] *y2); 

根据上面的公式我们知道 x1 y1的取值是与上一步的x2 y2有关的。那么我们就能写出递归代码

void gcd_p(int a,int b,int &x,int &y)
{
	if(b == 0)
	{

		x = 1;y = 0;q = a;
	}
	else
	{	
		//根据递推公式
		//每一步的x与y 都依赖于下一步的x与y
		//我们先用递归到最后一层 即b=0时,这时x一定等于1,y一定等于0 
		//然后我们根据先前推出的公式 ,一步步的回溯,结果就是最终的x与y了
		//公式推导过程
//		则:ax1+ by1= bx2+ (a mod b)y2;
//		即:ax1+ by1= bx2+ (a - [a / b] * b)y2=ay2+ bx2- [a / b] * by2;
//		说明: a-[a/b]*b即为mod运算。[a/b]代表取小于a/b的最大整数。
//		也就是ax1+ by1 == ay2+ b(x2- [a / b] *y2); 
		gcd_p(b,a%b,x,y);
		int temp = x;
		x = y;
		y = temp - a/b*y;
		printf("a:%d b:%d x:%d y:%d\n",a,b,x,y);
	}
}

其中q是gcd(a,b)的答案。

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值