经典神经网络 -- SSD : 设计原理与pytorch实现

本文深入探讨了SSD(Single Shot MultiBox Detector)的原理,介绍了其如何基于VGG16提取特征,并在不同层级生成特征图。在vgg16的后半部分,作者将全连接层转换为卷积层,添加额外的卷积层以提取目标检测所需的特征。通过这些特征图,SSD能够在8732个default box中定位和识别物体。此外,文章还提到了SSD的关键——多尺度融合。最后,文章提供了PyTorch实现SSD的参考资源,包括vgg特征提取、loss定义和训练过程。
摘要由CSDN通过智能技术生成

原理

       ssd采用的是VGG16的特征提取,在vgg16中提取二个特征图,之后又通过额外的增加卷积操作再次提取四个特征图,一共6个特征图。 

       前半部分是vgg-16的架构,作者在vgg-16的层次上,将vgg-16后边两层的全连接层(fc6,fc7)变换为了卷积层,conv7之后的层则是作者自己添加的识别层。

       在conv4_3层,有一层Classifier层,使用一层(3,3,(4*(Classes+4)))卷积进行卷积(Classes是识别的物体的种类数,代表的是每一个物体的得分,4为x,y,w,h坐标,乘号前边的4为default box的数量),这一层的卷积则是提取出feature map,不仅在conv4_3这有一层卷积,在Conv7、Conv8_2、Conv9_2、Conv10_2和Conv11_2都有一层这样的卷积层,因此最后提取到6个feature map层。

       最后的 Detections:8732 per Class 具体的计算如下:

  Conv4_3  得到的feature map大小为38*38:38*38*4 = 5776

  Conv7      得到的feature map大小为19*19:19*19*6 = 2166

  Conv8_2  得到的feature map大小为10*10&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值