HDOJ 3790 最短路径问题(最短路的路径追踪)

最短路径问题

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 25594    Accepted Submission(s): 7638


Problem Description
给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。
 

Input
输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点。n和m为0时输入结束。
(1<n<=1000, 0<m<100000, s != t)
 

Output
输出 一行有两个数, 最短距离及其花费。
 

Sample Input
  
  
3 2 1 2 5 6 2 3 4 5 1 3 0 0
 

Sample Output
  
  
9 11
 

Source


思路:

最短路径显然用迪杰斯特拉,但是要在更新最短的时候,如果当前路径是最短路径的一部分的话就更新最小费用。

代码:

#include<iostream>  
#include<cstdio>  
#include<cstring>  
#include<algorithm>  
#include<cmath>  
#include<queue>  
#include<stack>  
#include<cstdlib>  
using namespace std;  
const int inf=999999;  
int n,m;  
int startt,endd;
int e[1003][1003];  
int value[1003][1003];
int book[1003];  
int dis[1003];  
int val[1003]; 
  
void dijstra()  
{  
    int u,v;   
    for(int i=1;i<=n;i++)  
    {   
        dis[i]=e[startt][i];  
    	val[i]=value[startt][i];
	}    
    dis[startt]=0;  
    val[startt]=0;
    int minn;  
    for(int i=1;i<=n-1;i++)  
    {  
        minn=inf;  
		u=0;
        for(int j=1;j<=n;j++)  
        {  
            if(book[j]==0&&dis[j]<minn)  
            {  
                minn=dis[j];  
                u=j;  
            }  
        }  
        book[u]=1; 
        if(u==0)return;   
        for(int j=1;j<=n;j++)  
        {  
            if(!book[j]&&dis[j]>dis[u]+e[u][j]){
				dis[j]=dis[u]+e[u][j]; 
				val[j]=val[u]+value[u][j]; 	
			} 
			else if(dis[j]==dis[u]+e[u][j]&&val[j]>val[u]+value[u][j]){
				val[j]=val[u]+value[u][j];
			}
        }  
    }     
}  
  
int main()  
{    
    while(scanf("%d%d",&n,&m)!=EOF&&n+m)  
    {  
        memset(book,0,sizeof(book));  
        memset(e,inf,sizeof(e));  
        memset(value,inf,sizeof(value));  
        for(int i=1;i<=m;i++)  
        {  
            int a,b,d,p;
			scanf("%d%d%d%d",&a,&b,&d,&p);
			if(d<e[a][b]){
				e[a][b]=d;
				e[b][a]=d;
				value[a][b]=p;
				value[b][a]=p; 				
			}
        }  
		scanf("%d%d",&startt,&endd);
		dijstra();
        printf("%d %d\n",dis[endd],val[endd]);   
    }  
    return 0;  
}  



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值