大模型与知识图谱如何相互助力

本文探讨了知识图谱和大模型如何相互促进,指出知识图谱作为认知智能的基础,与大模型的融合是未来发展方向。通过知识图谱的结构化知识,大模型能更好地进行知识建模、抽取和推理;而大模型则可以辅助构建和完善知识图谱,特别是在生成常识知识的schema定义上发挥作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       目前各行各业在数字化、智能化发展的大势所趋下,信息新技术不断涌现,也在加快深入融合到传统实体行业应用中,比如知识图谱、人工智能、数字孪生等等,特别是基于人工智能的大模型在去年底被chatgpt的带领下涌现出一波又一波的浪潮,目前出现了各种开源大模型,国内更有各种类型的百模千模大战,为了跟踪最新技术和应用实践,本文也在时刻关注大模型,更在关注知识图谱,实事求是来说,知识图谱出现的更早,大概在2012年左右逐步兴起,但由于知识图谱本身是一个持续性、系统性、基础性工程,是不太容易体现出短期价值的工作,导致很多公司不愿意投入太多资源,其实本文认为,通过知识图谱为基础的认知智能的发展才是未来,知识图谱与大模型的结合或相互助力才是王道,也就是说,在大模型发展的当下,知识图谱与大模型的融合发展成为一个有意义的探索方向。知识图谱是对数据/文本的压缩,通过知识建模定义的知识的结构规范,提炼出知识最本质特征和语义。因此,schema是一种强范式指令,大模型是in-context learning,借助大模型来,实现自动生成常识知识的schema定义(垂直细领域、业

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一望无际的大草原

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值