Dify使用部署与应用实践

      最近在研究AI Agent,发现大家都在用Dify,但Dify部署起来总是面临各种问题,而且我在部署和应用测试过程中也都遇到了,因此记录如下,供大家参考。Dify总体来说比较灵活,扩展性比较强,适合基于它做智能聊天机器人,文本生成,工作流任务,Agent应用建设等场景,要比其他客户端工具更加灵活,更加适合二次开发,但Dify部署起来非常麻烦,会自动部署10个容器,任何一个出现问题,应用都无法正常使用。后续我会与Autogen对比,看看在Agent方面哪个更适合垂直行业AI应用的快速落地。

一、docker部署
1.查看docker-compose版本
docker-compose --version
2.复制环境配置文件

进入dify/docker目录,复制命令如下
cp .env.example .env

3.Docker Engine中的国内镜像配置

打开docker desktop设置功能,修改docker的Docker Engine中的国内镜像地址(否则会出现连接不上错误),具体如下

{
  "builder": {
    "gc": {
      "defaultKeepStorage": "20GB",
      "enabled": true
    }
  },
  "experimental": false,
  "registry-mirrors": [# 增加部分
    "https://docker.m.daocloud.io",
    "https://docker.imgdb.de",
    "https://docker-0.unsee.tech",
    "https://docker.hlmirror.com",
    "https://docker.1ms.run",
    "https://func.ink",
    "https://lispy.org",
    "https://docker.xiaogenban1993.com"
  ]
}
4.拉取并启动dify容器

拉取数据、依赖包进行安装配置。
docker compose up -d

5.配置代理

打开docker desktop设置功能,进入到Resources--》proxy下,设置代理服务器地址。

6.常见错误问题的解决方式

错误1:docker部署的容器启动过程中出现db-1总是重启
需要修改docker下的docker-compose.yaml文件db配置,具体如下

services:
  db:
    image: postgres:15-alpine
    volumes:
      - postgres-data:/var/lib/postgresql/data #增加这一行
      #- ./volumes/db/data:/var/lib/postgresql/data # 注释掉
# 在该文件结尾处增加
volumes:
  oradata:
  dify_es01_data:
  postgres-data:# 增加的内容。

然后执行容器的重新加载,具体如下。

docker compose down -v # 卸载
docker compose up # 重新加载
docker restart #重启docker

错误2:浏览器访问时出现502错误
查看服务情况

docker inspect --format '{{range.NetworkSettings.Networks}}{{.IPAddress}}{{end}}' docker-api-1
docker inspect --format '{{range.NetworkSettings.Networks}}{{.IPAddress}}{{end}}' docker-web-1

或者运行以下命令,查看服务详细信息,在返回结果找到IPAddress对应的值,即为ip地址。

docker inspect docker-web-1
docker inspect docker-api-1

比如返回结果如下。
web:172.18.0.4
api:172.18.0.9
然后修改nginx配置文件(比如D:\dify11\docker\nginx\conf.d\default.conf)内容如下:
这种方式重启docker后或重启nginx后会冲掉,或者ip地址会有变化,永久修改方式详见下面的方法。

# Please do not directly edit this file. Instead, modify the .env variables related to NGINX configuration.
# 主要这里的ip地址要根据docker中显示的ip地址进行修改,查询方式详见上面的docker inspect
server {
    listen 80;
    server_name _;

    location /console/api {
      proxy_pass http://172.18.0.9:5001;
      include proxy.conf;
    }

    location /api {
      proxy_pass http://172.18.0.9:5001;
      include proxy.conf;
    }

    location /v1 {
      proxy_pass http://172.18.0.9:5001;
      include proxy.conf;
    }

    location /files {
      proxy_pass http://172.18.0.9:5001;
      include proxy.conf;
    }

    location /explore {
      proxy_pass http://172.18.0.4:3000;
      include proxy.conf;
    }

    location /e/ {
      proxy_pass http://plugin_daemon:5002;
      proxy_set_header Dify-Hook-Url ://;
      include proxy.conf;
    }

    location / {
      proxy_pass http://172.18.0.4:3000;
      include proxy.conf;
    }    
}

永久修改default.conf配置文件方式如下,但这种方式容易导致nginx配置出错。
在docker目录,新建python程序,内容如下。但目前该程序容易导致安装nginx无法启动,解决办法就是将重启容器那一段不执行(需要手动重启nginx对应的容器)

#!/root/anaconda3/envs/llm/bin/python
# -*- coding: utf-8 -*-
'''
@file: dify-nginx.py
@date: 2025/3/11 15:36
@remark: 更新nginx配置信息,参考其他网友代码。
@input:dify-nginx.py
@output:dify-nginx.py
'''
import os
import docker

client = docker.from_env()
# 获取当前 Python 脚本所在的文件夹的绝对路径
current_dir = os.path.dirname(os.path.abspath(__file__))

# 读取文件
def file_get_contents(file_path):
    with open(file_path, "r", encoding="utf-8") as file:
        return file.read()

# 写入文件
def file_put_contents(file_path, content):
    with open(file_path, "w", encoding="utf-8") as file:
        file.write(content)

# 获取容器 IP
def get_container_ip(container_name):
    container = client.containers.get(container_name)
    return container.attrs['NetworkSettings']['Networks']['docker_default']['IPAddress']

# 重启容器
def restart_container(container_name):
    # 原始内容
    container = client.containers.get(container_name)
    container.restart()

def main():
    # 获取 API 和 Web 容器的 IP 地址
    api_container_ip = get_container_ip('docker-api-1')
    web_container_ip = get_container_ip('docker-web-1')
    print(f'api_container_ip: {api_container_ip}')
    print(f'web_container_ip: {web_container_ip}')
    # 拼接模板文件路径和目标文件路径
    template_path = os.path.join(current_dir, 'nginx/conf.d/default.conf.template')
    target_path = os.path.join(current_dir, 'nginx/conf.d/default.conf')
    # 读取模板文件内容并替换 IP 地址
    tpl_contents = file_get_contents(template_path)
    tpl_contents = tpl_contents.replace('http://api', f'http://{api_container_ip}')
    tpl_contents = tpl_contents.replace('http://web', f'http://{web_container_ip}')
    # 将修改后的内容写入目标配置文件
    file_put_contents(target_path, tpl_contents)
    # # 重启 Nginx 容器,记得注释掉
    # restart_container('docker-nginx-1')
    # print("Nginx container restarted with updated configuration.")
if __name__ == '__main__':
    main()

运行命令:python dify-nginx.py
错误3:plugin_daemon安装依赖库出错
解决办法如下。主要修改docker目录下的docker-compose.yaml文件内容(比如E:\dify2\docker\docker-compose.yaml)。增加国内镜像地址,记得注释掉原来的同名设置,如何需要代理,记得在最前面加上HTTP_PROXY,具体如下。

plugin_daemon:
    image: langgenius/dify-plugin-daemon:0.0.3-local
    restart: always
    environment:
      # Use the shared environment variables.
      <<: *shared-api-worker-env
      # HTTP_PROXY=http://ip:8080
      # HTTPS_PROXY=http://ip:8080
      # ... 中间省略
	  # 注释掉原来的,新增如下内容
	  # 设置 pip 使用国内镜像源
	  PIP_MIRROR_URL: https://pypi.tuna.tsinghua.edu.cn/simple
	  # 设置超时时间
		PYTHON_ENV_INIT_TIMEOUT: ${PYTHON_ENV_INIT_TIMEOUT:-640}

错误4:vobe文件找不到
这种错误一般需要在api对应的容器中,配置HTTP_PROXY代理,配置方式和错误3类似,具体不细说,但有时候不管用,所以需要手动更新几个文件路径(比如/api/tiktoken_ext/file),主要是vocab.bpe、encoder.json、r50k_base.tiktoken等5个文件。主要修改openai_public.py文件内容,文件位置大概在api容器的/app/api/.venv/lib/python3.12/site-packages/tiktoken_ext目录下。

# openai_public.py文件
def gpt2():
    mergeable_ranks = data_gym_to_mergeable_bpe_ranks(
        vocab_bpe_file="/api/tiktoken_ext/file/vocab.bpe",
        encoder_json_file="/api/tiktoken_ext/file/encoder.json",
        vocab_bpe_hash="1ce1664773c50f3e0cc8842619a93edc4624525b728b188a9e0be33b7726adc5",
        encoder_json_hash="196139668be63f3b5d6574427317ae82f612a97c5d1cdaf36ed2256dbf636783",
    )
    return {
        "name": "gpt2",
        "explicit_n_vocab": 50257,
        "pat_str": r50k_pat_str,
        "mergeable_ranks": mergeable_ranks,
        "special_tokens": {ENDOFTEXT: 50256},
    }

基本上就是以上四类问题了,如果你遇到了新的问题,那恭喜你中奖了,解决办法目前看只能采取完全删除容器和镜像,重启docker和系统后,换个好的网络环境进行拉取安装了。

二、应用实践
1.安装ollama插件

使用浏览器访问dify,首次安装需要设置管理员用户密码信息等,按照向导执行即可,打开插件,安装ollama插件,最好下载到本地后(需要科学上网),选择本地安装。
在用户--设置,配置大模型服务和embedding模型服务,一般配置本机或局域网内的ollama
服务。
注意:market中提供的好多插件安装过程会导致容器启动异常,建议不要装太多插件,只安装用到的插件,其他用自定义代码块来实现。

2.创建知识库

按照要求完成知识库创建,再加一下私域知识进去,worker容器会自动分块存储。

3.创建第一个聊天助手

在工作室创建聊天助手应用,在知识库部分关联本地知识,然后进行对话,具体如下。

### 如何在 Windows 10 上部署 Dify 服务器 #### 准备工作 为了成功部署Dify,在Windows 10环境中需先安装必要的软件工具,包括但不限于 Docker 和 Docker Compose。这些工具允许用户通过容器化技术轻松运行应用程序及其依赖项。 #### 安装 Docker 及其组件 确保已下载并安装最新版本的 Docker Desktop for Windows[^1]。这一步骤至关重要,因为后续操作都将依赖于 Docker 来创建和管理所需的虚拟环境和服务实例。 #### 获取所需镜像 按照官方指导或特定需求,从远程仓库拉取消息中提到的服务镜像文件。例如,可以通过命令行执行如下指令来获取 PostgreSQL 数据库服务: ```bash docker pull postgres ``` 对于其他必需的服务同样适用此方法,注意替换具体的镜像名称标签以匹配实际应用场景的要求[^2]。 #### 配置 Xinference 大模型管理框架 针对本项目特别指出要使用的 GLM4-Chat-1m 模型,需要配置好对应的 Xinference 环境以便能够加载并调用该预训练语言模型进行交互式对话处理等功能实现。 #### 启动 Dify 应用程序 完成上述准备工作之后,可以利用 Docker Compose 文件定义整个应用栈结构,并一键启动所有关联的服务进程。通常情况下会有一个 `docker-compose.yml` 文件用于描述各个微服务之间的关系以及它们各自的参数设置等信息。 最后,只需在一个终端窗口内导航至包含 compose 文件的位置并通过下面这条简单的命令即可让一切运转起来: ```bash docker-compose up -d ``` 这样就完成了基于 Windows 10 的本地计算机上部署使用 Dify 的全过程介绍。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一望无际的大草原

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值