PAT甲级 -- 1103 Integer Factorization (30 分)

The K−P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K−P factorization of N for any positive integers N, K and P.

Input Specification:

Each input file contains one test case which gives in a line the three positive integers N (≤400), K (≤N) and P (1<P≤7). The numbers in a line are separated by a space.

Output Specification:

For each case, if the solution exists, output in the format:

N = n[1]^P + ... n[K]^P

where n[i] (i = 1, ..., K) is the i-th factor. All the factors must be printed in non-increasing order.

Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 12​2​​+4​2​​+2​2​​+2​2​​+1​2​​, or 11​2​​+6​2​​+2​2​​+2​2​​+2​2​​, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { a​1​​,a​2​​,⋯,a​K​​ } is said to be larger than { b​1​​,b​2​​,⋯,b​K​​ } if there exists 1≤L≤K such that a​i​​=b​i​​ for i<L and a​L​​>b​L​​.

If there is no solution, simple output Impossible.

Sample Input 1:

169 5 2

Sample Output 1:

169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2

Sample Input 2:

169 167 3

Sample Output 2:

Impossible

我的思路:

1. 用 n / k ,然后开根号p 得到最大的因子, 接着进行dfs, 从最大的因子开始,填因子序列,直到到k个为止,写出的代码有点问题(毕竟我是搜索渣渣),但是参考了柳神的代码,感觉思路可以, 重新写一写!

补:

24分,错了2个点

#include <iostream>
#include <cmath>
#include <vector>
#include <algorithm>
using namespace std;

int n, k, p;
vector<int> temp , ans;
int maxFacSum = -1;  //记录全局最大因子和

double round(double r) // 四舍五入求最大因子
{
	return (r > 0.0) ? floor(r + 0.5) : ceil(r - 0.5);
}

void dfs(int index,int maxFac,int nowSum,int sum)  //index代表因子序列位置,maxFac目前最大的因子,nowSum表示目前的和,sum表当前因子和
{
	if (index == k)  //找到结果
	{
		if (nowSum == n && sum > maxFac)
		{
			maxFacSum = sum;
			ans = temp;
		}		
		return;
	}

	for (int i = maxFac;  i > 0; i--)  //从最大因子开始枚举
	{
		if (nowSum + pow(i*1.0, p) <= n) //如果 和<n 才可以填
		{
			temp[index] = i; //在index位置填上该因子
			dfs(index+1, i, nowSum + pow(i*1.0, p), sum+i);  //递归填index+1位置			
		} 		
		if(index == k - 1) return;
	}

}


int main()
{

	scanf("%d %d %d", &n, &k, &p);
	int maxFactor = (int)round(sqrt(round(n / (k*1.0))));
	temp.resize(k);
	dfs(0,maxFactor,0,0); //要填0号位置,最大因子是maxFactor,当前和为n,因子和为0
	if (maxFacSum == -1)
	{
		printf("Impossible");
		return 0;
	}
	printf("%d =", n);
	for (int i = 0; i < ans.size(); i++)
	{
		if (i == ans.size() - 1)
		{
			printf(" %d^%d",ans[i], p);
			return 0;
		}
		printf(" %d^%d +", ans[i], p);
	}
}

 

参考代码:

#include <iostream>
#include <cmath>
#include <vector>
using namespace std;

int n, k, p;
vector<int> v, temp, ans;
int maxFacSum = -1;

void init()  //此举的目的是保存i的p次方,知道其 <= n
	int temp = 0, index = 1;
	while(temp <= n)
	{
		v.push_back(temp);
		temp = pow(index*1.0, p);  //这个地方不能写成pow(index,p),在vs2010里面编译的时候无法匹配列表,正确是double pow(double r,int p)
		index++;
	}
}

void dfs(int index,int tempSum,int nowK,int facSum)  //index代表因子,tempSum是当前因为的p次幂的和,nowK是当前的因子个数,facSum是当前的因子和
{
	if (nowK == k)  //选了k个因子
	{
		if (tempSum == n && facSum > maxFacSum)  //和正好是n 并且当前因子和 > 全局因子和,进行更新
		{
			ans = temp;
			maxFacSum = facSum;
		}
		return;
	}

	while (index >= 1)  
	{
		if (tempSum + v[index] <= n)  //只有目前和+要选的因子的p次幂的和<n时,才进行选择
		{
			temp[nowK] = index;
			dfs(index,tempSum+v[index], nowK+1, facSum+index);
		}
		if (index == 1) return;
		index--;
	}

}

int main() 
{

	scanf("%d %d %d", &n, &k, &p);
	init();
	temp.resize(k);
	dfs(v.size()-1, 0, 0, 0);  //从最大开始,才能降序输出
	if (maxFacSum == -1) {
		printf("Impossible");
		return 0;
	}
	printf("%d = ", n);
	for (int i = 0; i < ans.size(); i++) {
		if (i != 0) printf(" + ");
		printf("%d^%d", ans[i], p);
	}
	return 0;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值