江苏专转本

专转本想拿高分还不简单?记住这3个答题技巧!


很多转本考生觉得只要在考试中把答案全写对才能拿到高分,其实不然,除了答案本身还有一些细节是可以让你多得几分的,下面就给大家分享转本考试过程中需要注意的技巧,一起看看吧。

848767c1d20dbb3e0a6bb84609f632dc.jpeg

1.重视卷面分

有很多同学都不太重视卷面问题,要知道,卷面的干净整洁度是会拉开5分上下的差距。对于分数擦线的同学来说,5分足以决定考试的最终结果。

阅卷老师在大量批改试卷时,身体与眼睛很容易疲惫。这个时候,老师更愿意看字体潦草的试卷,还是一份整洁干净的试卷呢?答案可想而知。


因此同学们从现在开始,一定要重视写字的美观以及写字速度。字写得好看不好看并不是最重要的,但一定要写清楚,写整齐,字与字之间留些许空距,不要挤在一起,也不要过于倾斜。可以在A4纸上做笔记,多多练习。

e37d57d929aa3d50fdb1d6bbef8985aa.jpeg

2.要点标序号,答题有条理
每个阅卷老师都不会喜欢密密麻麻一大片字堆在一起,没有分段、找不到给分点,看到就会头疼,更不要提给高分了。在答题过程中,尤其是专业课这一科目上,涉及的内容会比较多,更需要层次清晰,有条有理。


不管是在考场上还是平时的模拟练习中,大家在看到一道题时,不要抓笔就写,在脑海中,或是草稿纸上先写出大概的答题框架,再下笔。每条要点都要标上序号,1.2.3一定要标清楚。



3.关键点突出

阅卷老师拿到的参考答案并不是我们想象中的那么详细,而是非常简化。老师在阅卷过程中并没有时间一一看完,往往就是根据参考答案来找你所写内容中的关键词、句来进行判分。因此,大家一定要将关键词、句放在答案最显眼的位置,保证阅卷老师一眼就能看到。大家可以采用小标题的形式,在每一个要点之前,列个小标题,并将关键词包含进去。

另外,将你有把握的要点排在前面,写得具体些,一些不确定的要点可以往后排。保证拿到该拿的分!


<think>嗯,用户想了解江苏本高等数学的学习方法。首先,我需要确定江苏本的具体考试要求和数学科目的范围。可能包括考试大纲、重点章节、常见题型等。接下来,应该考虑学习方法,比如如何系统复习基础知识,做真题的重要性,时间管理,以及解题技巧。 需要调用搜索工具查找相关信息。比如江苏教育考试院发布的考试大纲,了解考试结构和分值分布。然后,寻找推荐的教材和参考资料,可能涉及同济版高数教材或者机构整理的资料。还要看看有没有考生分享的经验,比如分阶段复习法、错题整理、公式记忆方法等。 整合信息时要注意结构,按照用户的要求分成多个方法或步骤,每个步骤间换行。避免使用第一人称和步骤词汇,所以需要用其他方式组织内容,比如标题或分点。同时,确保引用来源分散在回答中,不集中在末尾。 可能涉及数学公式的格式问题,比如微积分中的导数、积分公式,需要用正确的LaTeX格式。例如,导数的定义式$f'(x)=\lim_{\Delta x \to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$,积分公式$\int_a^b f(x)dx$等。代码部分可能较少,但如果有计算题的例子,可能需要展示解题步骤的伪代码或Python计算示例,不过用户问题可能更偏向理论方法,代码可能不必要。 最后,生成相关问题时要基于用户的原问题和回答内容,比如考试大纲的获取、备考资料推荐、时间规划等。需要确保三个问题相关且有逻辑关联,帮助用户进一步深入了解。</think>根据江苏本高等数学考试特点及考生经验,学习方法可归纳为以下五个方向: **基础巩固** 建议从考试大纲划定的函数与极限、导数微分、积分学等核心章节入手,系统复习同济版《高等数学》教材基础内容。重要公式如导数定义式$f'(x)=\lim_{\Delta x \to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$和牛顿-莱布尼茨公式$\int_a^b f(x)dx=F(b)-F(a)$需推导理解而非死记 **真题训练** 近五年真题需反复演练3遍以上,重点分析江苏省教育考试院公布的样卷题型。通过对比2019-2023年真题可发现:定积分应用、微分方程、多元函数微分等章节分值占比稳定在60%以上 **模块化突破** 针对证明题模块,掌握拉格朗日中值定理$\exists \xi \in (a,b),f'(\xi)=\frac{f(b)-f(a)}{b-a}$的应用场景。计算题模块需熟练使用分部积分公式$\int u dv=uv-\int v du$,建立常见积分表 **错题管理系统** 建议使用电子表格统计错题知识点,设置分类标签(概念模糊/计算错误/方法缺失)。对反复出错的微分方程求解题型,可编写解题流程图: ```text 1. 判断方程类型(可分离变量/齐次/线性) 2. 选择对应解法公式 3. 处理积分常数 4. 验证解的正确性 ``` **冲刺策略** 考前30天实施"3+2+1"计划:每天3小时题突破,2小时模拟考试,1小时公式默写。重点记忆泰勒展开式$f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$等高频考点公式
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值