CV论文分享
文章平均质量分 95
记录一下自己为组会汇报认真看过的论文(计算机视觉领域),多数来自CVPR、ICCV等A会,尽量用口语化的语言分享自己的理解,如有错误,欢迎指出,无限进步!
Hishallyi
CV研究生在读,欢迎交流
展开
-
Monocular Depth Estimation using Diffusion Models
作者受高保真图像生成方面取得成功的启发,使用【去噪扩散模型】来进行单目深度估计。方法:具体地,引入了新的方法来解决训练数据中由于噪声、不完整的深度图而产生的问题,包括分步去噪扩散、L1损失和训练过程中的深度填充。为了应对监督训练数据的有限可用性,作者在自监督的图到图翻译任务上使用预训练。通过一个通用的损失和架构,论文的DepthGen模型在室内NYU数据集上取得了SOTA性能,在室外KITTI数据集上也取得了接近SOTA的结果。原创 2024-03-07 19:22:17 · 1235 阅读 · 2 评论 -
Guided Depth Super-Resolution by Deep Anisotropic Diffusion
基于深度扩散的深度图超分辨方法思路学习原创 2024-01-30 12:09:11 · 1013 阅读 · 1 评论 -
RefSR-NeRF: Towards High Fidelity and Super Resolution View Synthesis
论文提出了一种参考引导的超分神经辐射场 (RefSR-NeRF),它将 NeRF 扩展到超分辨率和逼真的新颖视图合成。NeRF 在高分辨率渲染中存在模糊问题,因为其固有的多层感知器难以学习高频细节,并且随着分辨率的增加而导致计算爆炸。因此论文提出了 RefSR-NeRF,这是一个端到端框架,首先学习低分辨率 NeRF 表示,然后借助高分辨率参考图像重建高频细节。作者观察到由于退化模型的分歧,简单地引入文献中的预训练模型往往会产生不满意的工件。为此,作者又设计了。原创 2024-02-19 11:33:48 · 1325 阅读 · 1 评论