Kafka 深入浅出——分区策略

1、 分区的概念

Kafka 有主题(Topic)的概念,它是承载真实数据的逻辑容器,而在主题之下还分为若干个分区,也就是说 Kafka 的消息组织方式实际上是三级结构:主题 - 分区 - 消息。主题下的每条消息只会保存在某一个分区中,而不会在多个分区中被保存多份.
在这里插入图片描述

对数据进行分区的主要原因,就是为了实现系统的高伸缩性(Scalability)。不同的分区能够被放置到不同节点的机器上,而数据的读写操作也都是针对分区这个粒度而进行的,这样每个节点的机器都能独立地执行各自分区的读写请求处理。并且,我们还可以通过添加新的节点机器来增加整体系统的吞吐量。

比如在 Kafka 中叫分区,在 MongoDB 和 Elasticsearch 中就叫分片 Shard,而在 HBase 中则叫 Region,在 Cassandra 中又被称作 vnode。从表面看起来它们实现原理可能不尽相同,但对底层分区(Partitioning)的整体思想却从未改变。

除了提供负载均衡这种最核心的功能之外,利用分区也可以实现其他一些业务级别的需求,比如实现业务级别的消息顺序的问题。

2、 分区策略

所谓分区策略是决定生产者将消息发送到哪个分区的算法。Kafka 为我们提供了默认的分区策略,同时它也支持你自定义分区策略.

public interface Partitioner extends Configurable, Closeable {

    /**
     * Compute the partition for the given record.
     *
     * @param topic The topic name
     * @param key The key to partition on (or null if no key)
     * @param keyBytes The serialized key to partition on( or null if no key)
     * @param value The value to partition on or null
     * @param valueBytes The serialized value to partition on or null
     * @param cluster The current cluster metadata
     */
    public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster);

    /**
     * This is called when partitioner is closed.
     */
    public void close();

}
1.2.1 轮训策略

也称 Round-robin 策略,即顺序分配。比如一个主题下有 3 个分区,那么第一条消息被发送到分区 0,第二条被发送到分区 1,第三条被发送到分区 2,以此类推。当生产第 4 条消息时又会重新开始,即将其分配到分区 0,就像下面这张图展示的那样。

img-l3bsR3e1-1609600352656)(%E6%B7%B1%E5%85%A5%E6%B5%85%E5%87%BAKafka-%E7%AC%AC%E4%B8%80%E5%A4%A9.assets/%E8%BD%AE%E8%AE%AD%E7%AD%96%E7%95%A5.png)]

这就是所谓的轮询策略。轮询策略是 Kafka Java 生产者 API 默认提供的分区策略。如果你未指定partitioner.class参数,那么你的生产者程序会按照轮询的方式在主题的所有分区间均匀地“码放”消息。

轮询策略有非常优秀的负载均衡表现,它总是能保证消息最大限度地被平均分配到所有分区上,故默认情况下它是最合理的分区策略,也是我们最常用的分区策略之一。

1.2.2 随机策略

也称 Randomness 策略。所谓随机就是我们随意地将消息放置到任意一个分区上,如下面这张图所示。

在这里插入图片描述

List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);
return ThreadLocalRandom.current().nextInt(partitions.size());

本质上看随机策略也是力求将数据均匀地打散到各个分区,但从实际表现来看,它要逊于轮询策略,所以如果追求数据的均匀分布,还是使用轮询策略比较好。事实上,随机策略是老版本生产者使用的分区策略,在新版本中已经改为轮询了。

1.2.3 按照消息key保存

Kafka 允许为每条消息定义消息键,简称为 Key。这个 Key 的作用非常大,它可以是一个有着明确业务含义的字符串,比如客户代码、部门编号或是业务 ID 等;也可以用来表征消息元数据。特别是在 Kafka 不支持时间戳的年代,在一些场景中,工程师们都是直接将消息创建时间封装进 Key 里面的。一旦消息被定义了 Key,那么你就可以保证同一个 Key 的所有消息都进入到相同的分区里面,由于每个分区下的消息处理都是有顺序的,故这个策略被称为按消息键保序策略,如下图所示。

在这里插入图片描述

List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);
return Math.abs(key.hashCode()) % partitions.size();

Kafka 默认分区策略实际上同时实现了两种策略:如果指定了 Key,那么默认实现按消息键保序策略;如果没有指定 Key,则使用轮询策略。

1.2.4 基于地理位置的分区策略

这种策略一般只针对那些大规模的 Kafka 集群,特别是跨城市、跨国家甚至是跨大洲的集群。

List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);
return partitions.stream().filter(p -> isSouth(p.leader().host())).map(PartitionInfo::partition).findAny().get();

可以从所有分区中找出那些 Leader 副本在南方的所有分区,然后随机挑选一个进行消息发送。

1.3 用户自定义分区
kafka的分区策略决定了producer生产者产生的一条消息最后会写入到topic的哪一个分区中
/**
     * Creates a record with a specified timestamp to be sent to a specified topic and partition
     * 
     * @param topic The topic the record will be appended to
     * @param partition The partition to which the record should be sent
     * @param timestamp The timestamp of the record, in milliseconds since epoch. If null, the producer will assign
     *                  the timestamp using System.currentTimeMillis().
     * @param key The key that will be included in the record
     * @param value The record contents
     * @param headers the headers that will be included in the record
     */
    public ProducerRecord(String topic, Integer partition, Long timestamp, K key, V value, Iterable<Header> headers) {
        if (topic == null)
            throw new IllegalArgumentException("Topic cannot be null.");
        if (timestamp != null && timestamp < 0)
            throw new IllegalArgumentException(
                    String.format("Invalid timestamp: %d. Timestamp should always be non-negative or null.", timestamp));
        if (partition != null && partition < 0)
            throw new IllegalArgumentException(
                    String.format("Invalid partition: %d. Partition number should always be non-negative or null.", partition));
        this.topic = topic;
        this.partition = partition;
        this.key = key;
        this.value = value;
        this.timestamp = timestamp;
        this.headers = new RecordHeaders(headers);
    }
  • 1、指定具体的分区号
//1、给定具体的分区号,数据就会写入到指定的分区中
producer.send(new ProducerRecord<String, String>("test", 0,Integer.toString(i), "hello-kafka-"+i));

  • 2、不给定具体的分区号,给定key的值(key不断变化)
//2、不给定具体的分区号,给定一个key值, 这里使用key的 hashcode%分区数=分区号
producer.send(new ProducerRecord<String, String>("test", Integer.toString(i), "hello-kafka-"+i));
  • 3、不给定具体的分区号,也不给对应的key
//3、不给定具体的分区号,也不给定对应的key ,这个它会进行轮训的方式把数据写入到不同分区中
producer.send(new ProducerRecord<String, String>("test", "hello-kafka-"+i));
  • 4、自定义分区

    • 定义一个类实现接口Partitioner
    package com.kaikeba.partitioner;
    
    import org.apache.kafka.clients.producer.Partitioner;
    import org.apache.kafka.common.Cluster;
    
    import java.util.Map;
    
    //todo:需求:自定义kafka的分区函数
    public class MyPartitioner implements Partitioner{
        /**
         * 通过这个方法来实现消息要去哪一个分区中
         * @param topic
         * @param key
         * @param bytes
         * @param value
         * @param bytes1
         * @param cluster
         * @return
         */
        public int partition(String topic, Object key, byte[] bytes, Object value, byte[] bytes1, Cluster cluster) {
            //获取topic分区数
            int partitions = cluster.partitionsForTopic(topic).size();
            
            //key.hashCode()可能会出现负数 -1 -2 0 1 2
            //Math.abs 取绝对值
            return Math.abs(key.hashCode()% partitions);
    
        }
    
        public void close() {
            
        }
    
        public void configure(Map<String, ?> map) {
    
        }
    }
    
    
    • 配置自定义分区类
    //在Properties对象中添加自定义分区类
    props.put("partitioner.class","com.kaikeba.partitioner.MyPartitioner");
    

​ 分区是实现负载均衡以及高吞吐量的关键,故在生产者这一端就要仔细盘算合适的分区策略,避免造成消息数据的“倾斜”,使得某些分区成为性能瓶颈,这样极易引发下游数据消费的性能下降

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值