subordinate
题目链接
题意
已知一个n节点的树中每个节点的祖先数和根节点编号,问至少要修改几个点可形成一个合法树。
思路
节点祖先数即节点深度,判断非法树即根到最大深度中有空层。
所以枚举最大深度,对于最大深度k,需要修改的点数即
max(0-k中空层数,k+1 - maxn中节点数+祖先为0的非根节点数)。
最后如果根节点祖先不为0,ans++。
代码
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
int a[201000],d[201000],p[201000],f[201000];
int n,maxn,s;
int main(){
scanf("%d%d",&n,&s);
memset(d,0,sizeof(d));
memset(p,0,sizeof(p));
memset(f,0,sizeof(f));
maxn = 0;
for(int i = 1;i <= n;i ++) {
scanf("%d",&a[i]);
d[a[i]] ++;
if(a[i] > maxn) maxn = a[i];
}
int ans = 0;
int flag = 0;
if(a[s] != 0) {
d[0] ++;
d[a[s]] --;
a[s] = 0;
flag = 1;
}
int tmp = 0;
for(int i = 0;i <= maxn ;i ++){
if(i == 0){
tmp = (d[0] - 1);
}
else{
if(d[i] == 0) ans ++;
}
f[i] = ans;
}
ans = max(ans,tmp);
for(int i = maxn;i >= 0;i --){
p[i] = p[i + 1] + d[i + 1];
}
for(int i = 0;i <= maxn;i ++){
if(p[i] + tmp>= f[i]){
ans = min(ans,p[i] + tmp);
}
else{
ans = min(ans,f[i]);
}
}
printf("%d\n",ans + flag);
return 0;
}