题意
给定一个有向图,每个点出度为1,各个边长度为1。
求一个最小的k,使得对于每个点,经过k长度到达y,从y出发经过k到达原点。
思路
如果存在k,那么有向图一定由多个环组成。
k即为每个奇数环长度和每个偶数环1/2长度的最小公倍数。
代码
#include <stdio.h>
#include <string.h>
#include <vector>
using namespace std;
vector <int>ans;
int n,c[110],visit[110];
long long gcd(long long a,long long b){
return a == 0?b:gcd(b%a,a);
}
int dfs(int u,int st,int d){
visit[u] = 1;
if(c[u] == st) return d+1;
else if(visit[c[u]]) return -1;
return dfs(c[u],st,d+1);
}
int main(){
scanf("%d",&n);
for(int i = 1;i <= n;i ++) scanf("%d",&c[i]);
int flag = 1;
for(int i = 1;i <= n;i ++){
if(!visit[i]) {
int tmp = dfs(i,i,0);
if(tmp == -1) {
flag = -1;break;
}
else ans.push_back(tmp);
}
}
if(flag == -1) printf("-1\n");
else{
long long numans = 1;
flag = 1;
for(int i = 0;i < ans.size();i ++){
long long tmp = ans[i]%2?ans[i]:ans[i]/2;
numans = numans * tmp / gcd(numans,tmp);
if(i != 0 && flag && ans[i] != ans[i - 1]) flag = 0;
}
printf("%I64d\n",numans);
}
return 0;
}