自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(44)
  • 资源 (9)

原创 【人工智能笔记】第十九节 efficientdet 目标检测模型,官方源码分析系列,Backbone实现细节(一)

这次是根据官方源码,分析efficientdet模型实现细节。因官方代码基于谷歌的automl框架实现,有很多选项配置,该系列基于默认配置,只关注一些实现细节,一些简单的层会粗略带过,计划分为如下章节:Backbone实现细节分析 BiFPN实现细节分析 Box与Class回归细节分析 Loss计算分析 Optimizer梯度计算分析efficientdet模型结构如下:代码结构如下:对应代码位于efficientdet/keras/efficientdet_keras.py:

2020-10-20 10:51:59 22

原创 【人工智能笔记】第十八节 tensorflow 2.0 分布式训练之多服务器的实现方式

多服务器分布式训练,使用tf.distribute.experimental.MultiWorkerMirroredStrategy,在调用前需要先配置包含各个服务器信息的全局变量,全局变量格式如下:# 设置全局变量,定义多个workeros.environ['TF_CONFIG'] = json.dumps({ 'cluster': { 'worker': ["localhost:12345", "localhost:12346"] # 这里有两个worker },

2020-09-01 11:00:43 44

原创 【人工智能笔记】第十七节 tensorflow 2.0 分布式训练之单机多显卡的实现方式

单机多显卡,关键使用tf.distribute.MirroredStrategy,对模型进行分布式创建与编译。其余Keras代码不用改变。该分布式训练是采用多个相同模型,在不同显卡中计算梯度,然后合并求平均,再更新所有权重,同步到所有模型中。另外可以在构建时,手动指定哪些操作使用的设备,如下:# 显示当前操作运行的硬件信息tf.debugging.set_log_device_placement(True)# 在CPU下运行with tf.device('/CPU:0'): a

2020-09-01 10:56:58 39

原创 【人工智能笔记】第十六节 目标检测算法mAP分数计算方式,及代码实现

现在各个目标检测比赛中,都采用mAP分数来作为评分标准。下面我们分析一下mAP计算涉及到哪些数据,以及如何计算的。首先说一下TP(True Positive)计算,对应目标结果,有4种情况:True Positive (TP)、False Positive (FP)、False Negative (FN)、True Negative (TN),如下面:计算预测框与实际框(Groud Truth)的IoU(Intersection over Union)值,对应每个实际框选,IoU大于阈值(通常为

2020-08-27 22:31:53 58

原创 【人工智能笔记】第十五节 通过K-means聚类算法,找到Yolo最佳anchors

K-means聚类算法,是通过随机选择N个聚类中心,找到所有点距离最近的中心,计算属于每个中心的点的平均值,用平均值更新中心位置。重复上述步骤不断更新中心位置,直到中心位置不变为止。如图:下面是实现方式:素材便签文件如下:<?xml version='1.0' encoding='utf-8'?><annotation> <folder>VOC2007</folder> <filename>domain1/10000

2020-08-15 22:36:30 65

原创 【数学笔记】第三节 函数

平面函数只能与x轴垂线有一个交点,因为f(x)=x,不能f(x)=x1 or x2。偶函数:f(x) = f(-x),关于y轴对称奇函数:f(-x) = -f(x),关于原点对称当x1<x2,f(x1)<f(x2),则函数递增当x1<x2,f(x1)>f(x2),则函数递减多项式(n次函数):幂函数:有理数函数,P(x)、Q(x)都是多项式:代数函数,包含加、减、乘、除、根号三角函数指数函数:对数函数:函

2020-06-30 16:02:32 71

原创 【数学笔记】第二节 三角函数

三角函数对于直角三角型的含义:三角函数在直角坐标系的含义:单位圆中的点 P(x,y)=P(cos a,sin a):特殊角度对应的三角函数值:三角函数定律:和差公式推导:cos和差公式:sin和差公式:tan和差公式:倍角公式推导:半角公式推导:其他公式都能从上面公式推导出。...

2020-06-30 15:57:18 87

原创 【数学笔记】第一节 代数

交换律:a+b=b+aa + b = b + aa+b=b+aab=baab = baab=ba结合律:(a+b)+c=a+(b+c)(a + b) + c = a + (b + c)(a+b)+c=a+(b+c)(ab)c=a(bc)(ab)c = a(bc)(ab)c=a(bc)分配律:a(b+c)=ab+aca(b + c) = ab + aca(b+c)=ab+ac====================ab=1=>a=1bab = 1 => a = \frac{1}{

2020-06-12 12:02:31 59

原创 【人工智能笔记】第十四节 Tensorflow 2.0 实现Disout,防止过拟合

华为诺亚实验室开源Disout算法,tensorflow 2.0 的实现。算法通过增加扰动,而不是屏蔽某些特征,来解决过拟合问题。论文:https://arxiv.org/abs/2002.11022实现代码:import tensorflow as tfclass Disout(tf.keras.layers.Layer): ''' disout 论文:https://arxiv.org/abs/2002.11022 ''' def _

2020-05-23 18:09:02 237 6

原创 【人工智能笔记】第十三节 Tensorflow 2.0 下自定义Optimizer,实现 AdaX Optimizer

关键方法_create_slots:为每个待更新变量创建用于计算的关联变量。 _resource_apply_dense与_resource_apply_sparse:每层梯度更新都会调用该方法,返回更新变量操作。Adax Optimizer实现代码如下:import tensorflow as tfclass AdaX(tf.keras.optimizers.Optimizer): r"""Implements AdaX algorithm. Arguments: .

2020-05-11 15:55:13 157

原创 【人工智能笔记】第十二节 Tensorflow 2.0 实现指针仪表方向纠正及指针识别(下)

相关资料:【人工智能笔记】第十节 Tensorflow 2.0 实现指针仪表方向纠正及指针识别(上)【人工智能笔记】第十一节 Tensorflow 2.0 实现指针仪表方向纠正及指针识别(中)这一节,会介绍如何使用现实素材继续训练模型,来完成真正的仪表识别。首先我们会使用标注工具对素材进行标注,然后使用实际标注素材进行训练,编写相应的训练代码。下面,我会逐步介绍如何实现。一、使用标...

2020-05-02 00:13:10 651

原创 【人工智能笔记】第十一节 Tensorflow 2.0 实现指针仪表方向纠正及指针识别(中)
原力计划

相关资料:【人工智能笔记】第十节 Tensorflow 2.0 实现指针仪表方向纠正及指针识别(上)这次创建预测模型,用于预测仪表指针值,与用于方向纠正4个点坐标。预测坐标点采用预测4个基准点偏移值的方式,而不是直接预测实际坐标值。训练前会对图片做数据增强,进行随机颜色、透视变换、增加噪点等操作,防止模型过拟合。一、创建模型1.特征提取模型使用Darknet-53,最后接(9*1...

2020-04-06 12:03:42 438

原创 【人工智能笔记】第十节 Tensorflow 2.0 实现指针仪表方向纠正及指针识别(上)
原力计划

这次目标是实现指针仪表方向纠正及指针识别。这现实情况下,要做指针仪表识别,因为各种拍摄角度、光线与指针值的不同,通常需要标注大量素材,而且这种标注相对复制。因此为解决该问题,我使用了迁移学习的方法,下面将详细讲解。这次将由三部分讲解整个过程:搭建Django服务,利用ECharts报表生成虚拟仪表图,作为第一阶段的训练素材。 编写模型训练与识别代码,并利用虚拟图做预训练。 人手标注现实...

2020-03-26 11:24:02 618 4

原创 【人工智能笔记】第九节:Windows下编译python OpenCV 4.2.0,SIFT特征提取,及透视变换纠正物体方向

编译并安装OpenCV0-1.安装前需先卸载pip或conda安装的opencv与opencv_contrib:pip uninstall opencv-contrib-pythonpip uninstall opencv-python0-2.python环境先安装NumPYpip install numpy1.下载OpenCV源码:https://github.com/o...

2020-03-07 12:29:58 606

原创 【人工智能笔记】第八节:强化学习算法简介及DQN人工智能算法Tensorflow 2.0实现

强化学习算法主要应用在游戏AI、自动驾驶、仿生机器人等场景。如在某个环境(游戏、驾驶路上),执行特定动作后,导致状态发生改变,产生不同结果(对应不同激励值,有正负),这种类型的场景都能使用强化学习。其中 DQN 算法是由 Google 提出的,不久前 Google 的 AlphaGo (围棋机器人)就是由该算法演变产生。传统强化学习方法Q-learningQ-learning 属于 of...

2020-01-22 23:14:20 465

原创 【后端笔记】第三节:Window 下进入conda环境并配置自启动

新建start.bat文件,内容如下:d:cd 脚本目录start "title" cmd /k "activate 环境名&&title server&&python demo.py"把文件复制到系统的启动文件夹或者建立一个计划任务即可。...

2019-12-12 10:05:01 146

原创 【人工智能笔记】第七节:Tensorflow 2.0 自定义Layer

自定义Layer:继承 tf.keras.layers.Layer。 在__init__构造函数里调用父类构造函数,并把参数传到父类。 build方法里初始化权重变量。 call方法里编写计算图。构造函数参数:trainable:布尔值,层的变量是否可训练。name:图层的字符串名称。dtype:图层的计算和权重的dtype(在TensorFlow 2中None使用均值的默...

2019-12-05 09:34:09 224

原创 【人工智能笔记】第六节:YOLO 目标检测算法进化史

YOLO 工作原理YOLO 的工作原理是,将图片输入到多层卷积以提取图片特征。然后直接在输出层回归目标框坐标及其所属的类别。最后通过NMS处理去掉重叠的目标框。 与 Faster-RCNN 不同,Faster-RCNN 是在提取特征图后,使用候选框去扫描特征图的方式去寻找目标。然后通过两个子网络进行回归分类。一个用于将候选框加上偏移缩放,以回归目标坐标。一个用来做目标分类。最后通过NMS处理...

2019-11-13 14:45:03 139

原创 【人工智能笔记】第五节:基于TensorFlow 2.0进行股票预测(JIT与Eager双模式实现)

该模型是典型的数据预测模型。实现多参数输入含时序,预测多个结果数据。输入维度(batch_size,历史数据长度,输入参数数量),这里取15个维度,包含:年、月、日、上证指数、深证指数与目标股票(开盘、最高、最低、收盘)*3。输出维度(batch_size,预测数据长度,输出参数数量),这里取12个维度,包含:上证指数、深证指数与目标股票(开盘、最高、最低、收盘)*3。训练流程,将数据...

2019-11-08 15:25:52 581

原创 【后端笔记】第二节:Nginx 安装SSL模块,配置Https

下载Nginx源码:http://nginx.org/en/download.html解压源码,并进入文件夹:# 下载wget http://nginx.org/download/nginx-1.17.5.tar.gz# 解压tar -zxvf nginx-1.17.5.tar.gz# 进入目录cd nginx-1.17.5配置增加SSL模块:./configur...

2019-11-03 10:23:40 116

原创 【Linux笔记】第三节:复制Anaconda环境(离线部署)

从原“/anaconda3/envs/”文件夹内,复制对应环境名的文件夹到需要部署服务器“/anaconda3/envs/”文件夹内。执行下面命令创建同名的新环境,会提示文件夹已存在是否覆盖,输入n即可:conda create -n 名称 python=3.7 --offline...

2019-10-30 16:01:23 953 5

原创 【人工智能笔记】第四节:基于TensorFlow 2.0实现CNN-RNN目标检测网络(自定义训练过程)

该文章使用WIDER FACE素材训练,下载地址:http://shuoyang1213.me/WIDERFACE/例子源码:https://github.com/tfwcn/AI/blob/master/CNN/face_detection.py这次使用的网络由Encoder(编码器)与Decoder(解码器)组成。Encoder负责图片特征提取。再由Decoder循环输出...

2019-10-11 10:59:21 1426 8

原创 【Linux笔记】第二节:使用Syncthing搭建文件自动同步服务,及配置自启动(Alpine系统)

Syncthing官网:https://syncthing.net/在这里看文件下载路径:下载并解压文件:# 下载wget https://github.com/syncthing/syncthing/releases/download/v1.2.2/syncthing-linux-amd64-v1.2.2.tar.gz# 解压tar -zxvf syncthing-lin...

2019-09-24 09:42:40 1522

原创 【后端笔记】第一节:.NET Core下基于OpenSSL密钥的RSA加密解密(跨平台)

使用OpenSSL生成密钥:# 生成密钥Pkcs1openssl genrsa -out private.pem 2048# 生成公钥Pkcs8openssl rsa -in private.pem -pubout -out public.pem# 公钥Pkcs8转Pkcs1openssl rsa -pubin -in public.pem -RSAPublicKey_out...

2019-09-15 13:58:05 253

原创 【人工智能笔记】第三节:TensorFlow 2.0即刻执行模式与JIT编译模式

TensorFlow 2.0 默认是即刻执行模式。相比以前要先构建模型结构图,执行后才看到结果。该模式下,构建图的同时就能输出对应结果,简化了调试流程。输入时也可以直接输入数据,不用先构造变量。不过,经初步测试,该模式会降低执行效率,推荐只在调试时使用。可通过在方法前加@tf.function 标识切换到JIT编译模式,该模式是1.0的默认模式,具有高效率,用于生产环境。下面是测试代码:...

2019-08-21 11:12:47 194

原创 【Docker初探】第七节:Alpine下编译Nginx,并使用nginx-http-flv-module搭建视频直播服务

相关资料:【Docker初探】第一节:Docker+Alpine+Openssh+Supervisor部署Linux基础环境【Docker初探】第二节:安装alpine-pkg-glibc,部署java环境【Docker初探】第三节:导入导出镜像及压缩【Docker初探】第四节:使用mount挂载共享文件夹(cifs)【Docker初探】第五节:安装PostgreSQL+Ngi...

2019-08-19 09:54:55 1173

原创 【人工智能笔记】第二节:Mask R-CNN物体检测原理及结构分析

原论文地址:http://cn.arxiv.org/pdf/1703.06870v3Mask R-CNN是在Faster R-CNN的物体检测基础上,增加了物体分割部分,并做了一些优化,下面会作具体描述。下面为Faster R-CNN的网络结构图:下面为Mask R-CNN的网络结构图:Mask R-CNN相对于Faster R-CNN改变如下:1.使用ResNet1...

2019-08-06 14:59:08 1327

转载 【转】Occlusion-aware R-CNN: Detecting Pedestrians in a Crowd 详解(遮挡下的行人检测)

文章地址:https://arxiv.org/pdf/1807.08407.pdf暂时没有放出源代码,如果有小伙伴找到代码的话欢迎留言给我。一、概述依然是解决在遮挡的情况下对人的检测的文章,作者分别从loss和two stage detector中核心的ROI Pooling操作这两个角度出发改善遮挡物体的检测问题。在之后我会根据这两个方面对文章进行一个简单的总结。先简单的放个在2.2中我...

2019-08-05 10:11:26 167

原创 【人工智能笔记】第一节:基于Keras的seq2seq聊天机器人实现

源码:https://github.com/tfwcn/AIWord.txt为用到的字符集,本文用的只包含训练集里的字。ai.txt为训练素材,格式:问题1\t回答1\n问题2\t回答2\nLSTM原理图:σ代表:sigmoid函数训练过程图:代码如下:import keras as Kimport matplotlib.pyplot...

2019-07-27 22:57:42 516 20

原创 【Docker初探】第六节:Docker Swarm集群,及Windows下部署

相关资料:【Docker初探】第一节:Docker+Alpine+Openssh+Supervisor部署Linux基础环境【Docker初探】第二节:安装alpine-pkg-glibc,部署java环境【Docker初探】第三节:导入导出镜像及压缩【Docker初探】第四节:使用mount挂载共享文件夹(cifs)【Docker初探】第五节:安装PostgreSQL+Ngi...

2019-07-16 15:29:28 586

原创 【Docker初探】第五节:安装PostgreSQL+Nginx

相关资料:【Docker初探】第一节:Docker+Alpine+Openssh+Supervisor部署Linux基础环境【Docker初探】第二节:安装alpine-pkg-glibc,部署java环境【Docker初探】第三节:导入导出镜像及压缩【Docker初探】第四节:使用mount挂载共享文件夹(cifs)本节内容接第二节的镜像继续安装PostgreSQL+Ngin...

2019-07-08 16:02:38 198

原创 【Docker初探】第四节:使用mount挂载共享文件夹(cifs)

相关资料:【Docker初探】第一节:Docker+Alpine+Openssh+Supervisor部署Linux基础环境【Docker初探】第二节:安装alpine-pkg-glibc,部署java环境【Docker初探】第三节:导入导出镜像及压缩在第二节里,我们通过在docker run的-v D:\tmp:/mnt/tmp参数挂载主机目录到容器中。这一节介绍另一种挂...

2019-07-05 16:50:30 1138

原创 【Docker初探】第三节:导入导出镜像及压缩

相关资料:【Docker初探】第一节:Docker+Alpine+Openssh+Supervisor部署Linux基础环境【Docker初探】第二节:安装alpine-pkg-glibc,部署java环境继续上一节,当镜像建立后就涉及到分发问题,用下面方法可导出镜像,再导入到新平台中,代码如下:# 导出镜像docker save highlevel/alpine-ser...

2019-07-04 17:55:02 240

原创 【Docker初探】第二节:安装alpine-pkg-glibc,部署java环境

相关资料:【Docker初探】第一节:Docker+Alpine+Openssh+Supervisor部署Linux基础环境这次在上一章的基础上配置java运行环境。建空文件夹,在下面新建Dockerfile文件,内容如下:# 基于上一章的镜像FROM highlevel/alpine-server:baseMAINTAINER Docker PPHT <t...

2019-07-04 17:20:15 1946 2

原创 【Docker初探】第一节:Docker+Alpine+Openssh+Supervisor部署Linux基础环境

建空文件夹,在下面新建Dockerfile文件,内容如下:# 基于alpine的镜像FROM alpine:3.9MAINTAINER Docker PPHT <tfwcn@sina.cn>#复制文件COPY start.sh /root/start.shCOPY supervisor.d/ /etc/supervisor.dRUN echo "http://mi...

2019-07-03 22:23:22 1043 6

转载 【转】6 种用 LSTM 做时间序列预测的模型结构 - Keras 实现

LSTM(Long Short Term Memory Network)长短时记忆网络,是一种改进之后的循环神经网络,可以解决 RNN 无法处理长距离的依赖的问题,在时间序列预测问题上面也有广泛的应用。今天我们根据问题的输入输出模式划分,来看一下几种时间序列问题所对应的 LSTM 模型结构如何实现。1. UnivariateUnivariate 是指:input 为多个...

2019-05-29 10:57:48 302

原创 Keras用LSTM字母顺序预测

这个只是一个LSTM Demo,输入一个字母预测下一个字母。可扩展成数据预测、代码生成、聊天机器人等复杂应用。import keras as Kimport matplotlib.pyplot as pltimport numpy as npimport mathalphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # 26# 字符与序号对应的字典c...

2019-04-28 16:01:55 482

原创 python下载股票数据

通过tushare包获取所有股票的数据。1.安装tushare: pip install tushare --upgrade2.注册账号获取免费的TOKEN。注册网址:https://tushare.pro/register?reg=260008获取TOKEN凭证:https://tushare.pro/document/1?doc_id=39获取日数据代码如下:...

2019-04-25 15:15:51 3693

原创 【Linux笔记】第一节:CentOS7 自定义启动服务

在/etc/rc.d/init.d/目录下新建autostart文件,文件名可自定义,加上执行权限。文件内容如下:#!/bin/sh## chkconfig: 2345 90 10# description: autostart## Simple autostart init.d script conceived to work on Linux systems# as...

2019-01-31 21:33:06 232

转载 【转】opencv python 图像缩放/图像平移/图像旋转/仿射变换/透视变换

https://segmentfault.com/a/1190000015645951

2018-11-19 16:00:35 131

【原创】Android小游戏FireBoll 1.01

控制球躲过各种障碍的小游戏。左右控制火球移动,躲过或飞越各种障碍,躲过一次障碍可得一分。点击Play开始,碰到障碍游戏结束。 1.01:修复小bug,优化界面。

2014-03-30

【原创】Android小游戏FireBoll

控制球躲过各种障碍的小游戏。左右控制火球移动,躲过或飞越各种障碍,躲过一次障碍可得一分。点击Play开始,碰到障碍游戏结束。

2014-03-27

DoubleClickFix可有效解决鼠标单击变双击问题

DoubleClickFix,可有效解决鼠标单击变双击问题,亲测有效。

2013-07-11

Visual Assist X 10.7.1940 破解补丁

Visual Assist X 10.7.1940 破解补丁,可用于10.7版本的破解,已测试可用!

2013-07-05

【原创】MP3标签修改器 V1.0 for Android

【原创】MP3标签修改器 V1.0 for Android 该版本只提供批量修改MP3标签功能,其他功能将在后继版本中开放。 使用说明: 打开后按菜单键即可选择文件或文件夹, 选择后按菜单键确认, 然后编辑标签, 预览, 选择要批量修改的文件, 按批量修改后即可。 标签表达式说明: 保留字符:%1,%2,%3 例子: 原文件: 文件1:歌手1 - 歌名1 文件2:歌手2 - 歌名2 公式: 文件名:%1 - %2 歌手:%1 歌名:%2 按以上公式即可提取文件名中的歌手和歌名。

2011-11-25

最好的wim压缩解压软件! Wimtool V1.30

最好的wim压缩解压软件! Wimtool V1.30可以直接加载wim镜像!在文件夹点右键即可压缩成wim文件!(winXP SP3以上版本均可正常使用,缺少dll的请自己到网上下载)

2011-07-11

【人工智能笔记】第十节 Tensorflow 2.0 实现指针仪表方向纠正及指针识别 源码

密码在第十二节: https://blog.csdn.net/highlevels/article/details/104833998

2020-05-02

【原创】MP3标签修改器 V1.2 for Android

该版本提供功能有: 1.批量修改MP3标签 2.批量修改文件名 使用说明:打开后添加文件,然后编辑标签,点击下一步,选择要批量修改的文件(可以改编码),点击保存即可。 标签表达式说明: 保留字符:%1-%9 例子: 原文件: 文件1:歌手 1 - 歌名1 文件2:歌手 2- 歌名2 公式: 文件名:% 1- %2 歌手:%1 歌名:%2 按以上公式即可提取文件名中的歌手和歌名。 下載地址:http://shouji.baidu.com/software/item?docid=6506273&from=as

2015-04-16

最好的wim压缩解压软件!

最好的wim压缩解压软件!可以直接加载wim镜像!在文件夹点右键即可压缩成wim文件!(winXP SP3以上版本均可正常使用,缺少dll的请自己到网上下载) V1.30新版地址:http://download.csdn.net/source/3434713

2009-05-03

空空如也

空空如也
提示
确定要删除当前文章?
取消 删除