基础课-集合与函数

本文介绍了数学中的关键概念,包括处理多项式余式的方法(如裂项法),集合的基本性质(如确定性、互异性、无序性以及常见数集),以及二次函数的加强理解和集合之间的包含关系。强调了偶次方的性质和如何从集合角度解决问题。
摘要由CSDN通过智能技术生成

1.技巧

1.余式次数要低于除式

2.裂项,分母2项,分母各项的差等于分子 就可以转成 分母拆项分之一相减;

分母3项的话,记头和尾的差

3.

2.集合

集合中元素的特性:

1.确定性 2.互异性 3.无序性

常用数集:实数集R,有理数集Q,整数集Z,正整数集N*或N+,非负整数集N

子集和真子集:如果集合A的任意一个元素都是集合B的元素,那么集合A为集合B的子集,用

 表示。如果集合A是集合B的子集,并且集合B不是集合A的子集,那么集合A叫做集合B的真子集,用表示      

空集是任何非空集合的真子集

 3.二次函数

 

4.加强

1.偶次方不能推奇次方

2.裂项

3.集合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值