文章目录 一. 导数与微分 1. 内容要点 1.1. 导数与微分的概念 1.2. 导数与微分的几何意义 1.3. 连续、可导、可微之间的关系:可微与可导之间等价 1.4. 求导公式与求导法则 a. 复合函数求导 b. 隐函数求导 c. 反函数的导数 d.参数方程 e. 对数求导法 f. 常见高阶导 2. 题型与做题技巧 题型一:导数与微分的概念 1. 利用导数定义求极限 2. 利用导数定义求导数 3. 利用导数定义判断可导性 题型二:导数的几何意义 题型三:导数与微分的计算(见三大计算) 二. 导数应用 1. 内容要点 a. 四大微分中值定理 b. 极值与最值 c. 曲线的曲向与拐点 d. 渐进线与曲率 2.题型与做题技巧 a. 函数单调性、极值与最值(大题) 例题1: 积分函数求极值 例题2: 方程组求极值 例题3:抽象方程判断极值 b. 曲线的凹向、拐点、渐进线及曲率(大题) c. 方程根的存在性与个数(大题) d. 证明函数不等式(见证明专栏) e. 微分中值定理有关的证明题(见证明专栏) 一. 导数与微分 1. 内容要点 1.1. 导数与微分的概念 导数定义的等价形式 左导数、右导数的概念 可微的充要条件:可导 1.2. 导数与微分的几何意义 导数表示斜率、微分表示切线上的增量 1.3. 连续、可导、可微之间的关系:可微与可导之间等价 1.4. 求导公式与求导法则 求导法则 a. 复合函数求导 链式法则 b. 隐函数求导 两种方式 c. 反函数的导数 导数的倒数 d.参数方程 e. 对数求导法 f. 常见高阶导 2. 题型与做题技巧 题型一:导数与微分的概念 1. 利用导数定义求极限 凑 1 ∞ 1^∞