使用遗传算法计算方程的最大值

  • 遗传算法介绍:

       遗传算法使用计算机程序来模拟生物的进化过程,形象的来说,就是通过“繁殖”、“变异”,“竞争”以及自然选择来得到问题的最优解。

      遗传算法的基本结构如下:

 

=   0 ;
initialize(p(t));     
// 找出原始解集
evaluate(p(t));    // 评估解集中是否有最优解
while (not termination condition)
do
    pp(t) 
=  parent_select(p(t));     // 选择父体
    pp(t)  =  crossover(pp(t));         // 父体之间互换信息
    p(t + 1 =  mutate(pp(t));           // 变异,引入多样性
    evaluate(p(t + 1 ));                   // 评估是否有最优解
    t  =  t + 1 ;
end 
while

return  the best solution

 

  • 具体实例

 

    •  问题描述:

                           求解问题:max f(x, y) = 21.5 + x * sin(4x * PI) + y * sin(20y * PI); 

                           其中 -3.0 <= x <= 12.1, 4.1 <= y <=5.8; 要求解精确到小数点之后1位。

    • 个体表示:

如果我们要用遗传算法解决问题,第一步要解决的是如何表示每一个个体。一般情况下,我们使用一个二进制的整数来表示一个个体,整数的位数与所要表示的精度有关,如:

如果用m表示x(精确到小数点后t位)所需要的二进制位串的长度,则m满足:

(xmax- xmin) * 10t <= 2m - 1;

 则由二进制编码(bin)到实数的转换如下:

x = xmin + decimal(bin) * (xmax- xmin ) / (2m - 1);

所以,在本例中,x可以用8位二进制串表示, y可以用5位二进制串表示。

  • 确定评估函数: 

由于此时就是计算这个方程的最大值,所以可以简单的取表达式f(x, y)来作为评估的函数。其函数值越大,表示评估的适应度越大。

  •  确定选择策略:

选择的策略有很多。在本问题中,由于使用函数本身做评估函数,即评估的适应度越大,选择的概率应该越大,所以可以使用轮盘赌策略来进行选择,具体步骤如下:

  1. 计算种群中每个个体的适应度之和F =  ∑eval(k);
  2. 计算每个个体的选择概率 P k = eval(k) / F;
  3. 计算每个个体的累计概率 Q k = Q k-1 + P k
  4. 产生一个0~1的随机数r, 如果Q k-1 <= r  <=  Q k , 则选择第k个个体。
  • 确定遗传算子:

遗传算子主要指个体之间进行杂交和变异。

对于杂交,可以使用轮盘赌策略来选择部分父体进行信息的两两部分交换,交换的位置可以随机确定。

对于变异,同样可以使用轮盘赌策略来选择部分父体进行变异。随机的将表示这个个体的二进制位串的某个位求反。

  • 终止条件:

由于使用函数本身做评估函数,故不可能根据评估的最大值来作为终止条件。这个时候可以选择迭代的次数作为终止的限制。

  • 程序源码

 

#include  < iostream >
#include 
< vector >
#include 
< utility >
#include 
< bitset >
#include 
< algorithm >
#include 
< string >
#include 
< cmath >
#include 
< cstdlib >
#include 
< ctime >
#include 
< cassert >
using   namespace  std;

const   double  PI  =   3.1415926535 ;

const   double  pc  =   0.75 ;      // 杂交概率
const   double  pm  =   0.015 ;   // 变异概率

const   double  X_LOW  =   - 3.0 ;
const   double  X_UP  =   12.1 ;
const   double  Y_LOW  =   4.1 ;
const   double  Y_UP  =   5.8 ;

const   short  LEFT_BIT  =   8 ;
const   short  RIGH_BIT  =   5 ;
const   short  BIT  =  LEFT_BIT  +  RIGH_BIT;

const   short  GEN  =   1000 ;    // 迭代次数
const   short  COUNT  =   20 ;   // 种群规模
vector <  pair <  bitset < BIT > double   >   >  sol_set(COUNT);   // 最终选择个体的保存位置
vector <  pair <  bitset < BIT > double   >   >  temp(COUNT);

void  initialize();
void  evaluate();
void  parent_select();
void  crossover();
void  mutate();

// 目标函数
double  func( double  x,  double  y)
{
    
return 21.5 + x * sin(4 * x * PI) + y * sin(20 * PI * y);
}

// 使用随机数初始化种群
void  initialize()
{
    srand((unsigned 
short) time(NULL));
    
int i;
    
for(i = 0; i < COUNT; i++)
    
{
        bitset
<BIT> bitvec;
        
int j;
        
for(j = 0; j < BIT; j++)
        
{
            
if(rand() % 2)
                bitvec[j] 
= 1;
            
else
                bitvec[j] 
= 0;
        }

        
        pair
< bitset<BIT> , double > sol(bitvec, 0.0);
        sol_set[i] 
= sol;
    }

}


// 对种群中的个体进行评估
void  evaluate()
{
    
int i;
    
for(i = 0; i < COUNT; i++)
    
{
        bitset
<LEFT_BIT> le(sol_set[i].first.to_string(), 0, LEFT_BIT);
        bitset
<RIGH_BIT> ri(sol_set[i].first.to_string(), LEFT_BIT, RIGH_BIT);
        
        
double x = X_LOW + le.to_ulong() * (X_UP - X_LOW) / ((1 << LEFT_BIT) - 1);
        assert(x 
>= X_LOW && x <= X_UP);

        
double y = Y_LOW + ri.to_ulong() * (Y_UP - Y_LOW) / ((1 << RIGH_BIT) - 1);
        assert(y 
>= Y_LOW && y <= Y_UP);

        sol_set[i].second 
=  func(x, y);
    }

}

// 使用轮盘赌策略选择个体
void  parent_select()
{
    
double sum = 0.0, p = 0.0, q = 0.0;
    
int i;
    
for(i = 0 ; i < COUNT; i++)
    
{
        sum 
+= sol_set[i].second;
    }


    vector
<double> pq(COUNT);
    
for(i = 0 ; i < COUNT; i++)
    
{
        p 
= sol_set[i].second / sum;
        q 
+= p;
        pq[i] 
= q;
    }


    srand((unsigned 
short) time(NULL));
    
for(i = 0 ; i < COUNT; i++)
    
{
        
double r = rand() * 1.0 / RAND_MAX;

        
int j;
        
for (j = 0; r > pq[j] ; j++);
        
        temp[i] 
= sol_set[j];
    }

    sol_set.swap(temp);
}

// 按照轮盘赌策略杂交
void  crossover()
{
    srand((unsigned 
short) time(NULL));
    vector
<int> index;
    
int i ;
    
for(i = 0; i < COUNT; i++)
    
{
        
double r = rand() * 1.0 / RAND_MAX;
        
if( r < pc)
        
{
            index.push_back(i);
        }

    }


    
int m, n, j;
    
while(index.size() >= 2)
    
{
        m 
= rand() % index.size();
        index.erase(index.begin() 
+ m);

        n 
= rand() % index.size();
        index.erase(index.begin() 
+ n);

        i 
= rand() % BIT;
        
        
for(j = i; j < BIT; j++)
        
{
            
if(sol_set[m].first[j] != sol_set[n].first[j])
            
{
                sol_set[m].first.flip(j);
                sol_set[n].first.flip(j);
            }

        }

    }
    
}

// 按照轮盘赌策略变异
void  mutate()
{
    srand((unsigned 
short) time(NULL));
    vector
<int> index;
    
int i ;
    
for(i = 0; i < COUNT; i++)
    
{
        
double r = rand() * 1.0 / RAND_MAX;
        
if( r < pm)
        
{
            index.push_back(i);
        }

    }


    pair
< bitset<BIT>double > sol;
    bitset
<BIT> a;

    
while(index.size() > 0)
    
{
        sol 
= sol_set.at(index.at(index.size() - 1));

        i 
= rand() % BIT;

        a 
= sol.first;
        a.flip(i);

        index.pop_back();
    }

}


int  main( int  argc,  char   ** argv)
{
    
int i;
    initialize();
    evaluate();

    
for(i = 0 ; i < GEN; i++)
    
{
        parent_select();
        crossover();
        mutate();
        evaluate();
    }


    
for(i = 0; i < COUNT; i++)
    
{
        cout 
<< sol_set.at(i).second << endl;
    }

    
return 0;
}

 

程序比较简单,基本上都是自解释的。

由于遗传算法经过大量的随即选择过程,故最终的结果不一定正确。在这个题目中,按照微积分的方法算出最大值为38.5左右(精确到小数点后1位)。计算的结果可能会接近这个值,也可能离这个值很远。多计算几次看看。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值