KMP
KMP 是模式串匹配的算法,本来最坏时间复杂度可以达到 O ( n × m ) \operatorname{O}(n\times m) O(n×m),但是 kmp 可以将复杂度优化到 O ( n + m ) \operatorname{O}(n+m) O(n+m)。
KMP 的思想是利用之前匹配过的信息进行下一轮的匹配。
首先,要利用匹配串 t t t 的信息来进行匹配。比如, t = "abcabc" t=\texttt{"abcabc"} t="abcabc", s = abcabdc s=\texttt{abcabdc} s=abcabdc,那么发现第一个字符 ’a’ \texttt{'a'} ’a’ 只能够在 1 1 1 和 4 4 4 匹配进去。发现这一个匹配模式跟本身的字符串有关,那么失配后只需要跳至下一个重复单元即可。
设 p r e ( n ) pre(n) pre(n) 表示 s s s 中的前缀 [ 1 , n ] [1,n] [1,n], s u f ( n ) suf(n) suf(n) 表示 s s s 中的后缀 [ ∣ s ∣ − n + 1 , ∣ s ∣ ] [|s|-n+1,|s|] [∣s∣−n+1,∣s∣],那么 KMP 就是利用 n x t nxt nxt 维护这一个最大的 n n n 在 s s s 的子串 [ 1 , m ] [1,m] [1,m] 下的答案。即 n x t m = max n = 1 ⌊ ∣ s ∣ 2 ⌋ ( n [ p r e ( 1 , n ) = s u f ( n ) ] ) nxt_m=\max_{n=1}^{\lfloor\frac{|s|}{2}\rfloor}(n[pre(1,n)=suf(n)]) nxtm=maxn=1⌊2∣s∣⌋(n[pre(1,n)=suf(n)])。
发现如果这一个字符是匹配的,那么可以从上一个匹配的 n x t nxt nxt 继承过来,即 n x t i = n x t j + 1 nxt_i=nxt_j+1 nxti=nxtj+1,但是难点在于确定这一个 j j j。
考虑失配的情况,这也是从原来推过来的!于是,我们可以不断地跳 n x t nxt nxt 来找到这个位置。于是, n x t nxt nxt 数组就得出来了。得出了 n x t nxt nxt,那么也可以进行 O ( n + m ) \operatorname{O}(n+m) O(n+m) 的匹配了。
int len1=strlen(s1+1);
int len2=strlen(s2+1);
int pos=0;
for(int i=2;i<=len2;++i){
while(pos&&s2[i]!=s2[pos+1]){
pos=nxt[pos];//跳 nxt
}
if(s2[i]==s2[pos+1]){
++pos;//匹配成功
}
nxt[i]=pos;//存入 nxt
}
pos=0;
for(int i=1;i<=len1;++i){
while(pos&&s1[i]!=s2[pos+1]){
pos=nxt[pos];//跳 nxt
}
if(s1[i]==s2[pos+1]){
++pos;//匹配成功
}
if(pos==len2){
printf("%d %d\n",i,i+len2-1);//一个位置
}
}
例题
我们可以发现,在匹配成功的时候才需要删除,而且只能够从尾巴删除。于是考虑栈维护答案。如果没有匹配到,那么就把这个元素入栈。如果匹配到了,那么栈内后 m m m 个字符就组成了一个待删除的字符串,将栈内后 m m m 个字符出栈即可。
#include<bits/stdc++.h>
#define MAXN 1000001
using namespace std;
char s1[MAXN],s2[MAXN];
int nxt1[MAXN],nxt2[MAXN],stk[MAXN];
int main(){
scanf("%s %s",s1+1,s2+1);
int len1=strlen(s1+1);
int len2=strlen(s2+1);
int pos=0,top=0;
for(int i=2;i<=len2;++i){
while(pos&&s2[i]!=s2[pos+1]){
pos=nxt1[pos];
}
if(s2[i]==s2[pos+1]){
++pos;
}
nxt1[i]=pos;
}
pos=0;
for(int i=1;i<=len1;++i){
while(pos&&s1[i]!=s2[pos+1]){
pos=nxt1[pos];
}
if(s1[i]==s2[pos+1]){
++pos;
}
nxt2[i]=pos;
stk[++top]=i;
if(pos==len2){
top-=len2;
pos=nxt2[stk[top]];
}
}
for(int i=1;i<=top;++i){
putchar(s1[stk[i]]);
}
return 0;
}
字符串哈希
字符串哈希的思想是,通过把字符串看做 k k k 进制数来进行存储和比较。
- 优点:相较于直接字符比较,更加迅速,而且能够 O ( 1 ) \operatorname{O}(1) O(1) 查询某段子区间的哈希值。
- 缺点:容易冲突。
为了应对冲突,我们需要对哈希进制做一些优化,模数也需要非常极品。下面,给出预处理模版代码。
typedef unsigned long long ull;
ull base[MAXN],pre[MAXN],suf[MAXN];//进制、前缀哈希、后缀哈希
int len;
char s[MAXN];
inline ull get_pre(int l,int r){//O(1) 查询子区间哈希值
return ((pre[r]-pre[l-1]*base[r-l+1])%MOD+MOD)%MOD;
}
inline ull get_suf(int l,int r){//O(1) 查询子区间哈希值
return ((suf[l]-suf[r+1]*base[r-l+1])%MOD+MOD)%MOD;
}
inline void prework(){
base[0]=1;
for(int i=1;i<MAXN;++i){
base[i]=(base[i-1]*HASH)%MOD;
}
for(int i=1;i<=len;++i){
pre[i]=(pre[i-1]*HASH+s[i]+DIF)%MOD;//加上偏移量防卡
}
for(int i=len;i>=1;--i){
suf[i]=(suf[i+1]*HASH+s[i]+DIF)%MOD;//加上偏移量防卡
}
}
有时候,可以采取双模哈希来进行防卡,这样被卡的几率很小。
typedef unsigned long long ull;
ull base1[MAXN],pre1[MAXN],suf1[MAXN];
ull base2[MAXN],pre2[MAXN],suf2[MAXN];//进制、前缀哈希、后缀哈希
int len;
char s[MAXN];
inline ull get_pre1(int l,int r){
return ((pre1[r]-pre1[l-1]*base1[r-l+1])%MOD1+MOD1)%MOD1;
}
inline ull get_suf1(int l,int r){
return ((suf1[l]-suf1[r+1]*base1[r-l+1])%MOD1+MOD1)%MOD1;
}
inline ull get_pre2(int l,int r){//O(1) 查询子区间哈希值
return ((pre2[r]-pre2[l-1]*base2[r-l+1])%MOD2+MOD2)%MOD2;
}
inline ull get_suf2(int l,int r){
return ((suf2[l]-suf2[r+1]*base2[r-l+1])%MOD2+MOD2)%MOD2;
}
inline void prework(){
base1[0]=base2[0]=1;
for(int i=1;i<MAXN;++i){
base1[i]=(base1[i-1]*HASH1)%MOD1;
base2[i]=(base2[i-1]*HASH2)%MOD2;
}
for(int i=1;i<=len;++i){
pre1[i]=(pre1[i-1]*HASH1+s[i]+DIF1)%MOD1;
pre2[i]=(pre2[i-1]*HASH1+s[i]+DIF2)%MOD2;//加上偏移量防卡
}
for(int i=len;i>=1;--i){
suf1[i]=(suf1[i+1]*HASH1+s[i]+DIF1)%MOD1;
suf2[i]=(suf2[i+1]*HASH2+s[i]+DIF2)%MOD2;//加上偏移量防卡
}
}
例题
这一道题目可以先把哈希值处理出来,然后发现可以枚举中间点,然后向左右二分。由于向左延伸 n n n 格是回文串,那么 n − 1 n-1 n−1 格肯定也是回文串。所以满足单调性可以二分。由于本题有 Hack 数据卡自然溢,所以要打双模。
#include<bits/stdc++.h>
#define MAXN 500005
#define HASH1 31
#define HASH2 29
#define MOD1 193910017
#define MOD2 1000000009
#define ADD 131
using namespace std;
typedef long long ull;
int len;
char s[MAXN];
ull base1[MAXN],pre1[MAXN],suf1[MAXN];
ull base2[MAXN],pre2[MAXN],suf2[MAXN];
inline ull get_pre1(int l,int r){
if(!l){
return 0;
}
return ((pre1[r]-pre1[l-1]*base1[r-l+1])%MOD1+MOD1)%MOD1;
}
inline ull get_suf1(int l,int r){
if(!l){
return 0;
}
return ((suf1[l]-suf1[r+1]*base1[r-l+1])%MOD1+MOD1)%MOD1;
}
inline ull get_pre2(int l,int r){
if(!l){
return 0;
}
return ((pre2[r]-pre2[l-1]*base2[r-l+1])%MOD2+MOD2)%MOD2;
}
inline ull get_suf2(int l,int r){
if(!l){
return 0;
}
return ((suf2[l]-suf2[r+1]*base2[r-l+1])%MOD2+MOD2)%MOD2;
}
int main(){
scanf("%d %s",&len,s+1);
base1[0]=base2[0]=1;
for(int i=1;i<=len;++i){
base1[i]=(base1[i-1]*HASH1)%MOD1;
base2[i]=(base2[i-1]*HASH2)%MOD2;
pre1[i]=(pre1[i-1]*HASH1+(s[i]-'0'+ADD))%MOD1;
pre2[i]=(pre2[i-1]*HASH2+(s[i]-'0'+ADD))%MOD2;
}
for(int i=len;i>=1;--i){
suf1[i]=(suf1[i+1]*HASH1+('1'-s[i]+ADD))%MOD1;
suf2[i]=(suf2[i+1]*HASH2+('1'-s[i]+ADD))%MOD2;
}
ull ans=0;
for(int i=1;i<len;++i){
int l=0,r=min(i,len-i),res=0;
if(s[i]==s[i+1]){
continue;
}
while(l<=r){
int mid=(l+r)>>1;
if(get_pre1(i-mid,i)==get_suf1(i+1,i+1+mid)&&get_pre2(i-mid,i)==get_suf2(i+1,i+1+mid)){
l=mid+1;
res=l;
}else{
r=mid-1;
}
}
ans+=res;
}
printf("%llu",ans);
return 0;
}
字典树
字典树是一种 k k k 叉树结构。原理是每一个节点都有一个布尔值 f l a g flag flag,判断是否是一个字符串的结尾。每一条边都有一个字符,表示前面的字符拼接起来就是字符串。这种数据结构能够 O ( n ) \operatorname{O}(n) O(n) 查找前缀。
比如,加入一个字符串到字典树里面,那就对这个字符串进行建边。枚举每一个字符作为边,比如 s = "abccc" s=\texttt{"abccc"} s="abccc",字典树里面已有 t 1 = "avcdv" , t 2 = "abcdh" t_1=\texttt{"avcdv"},t_2=\texttt{"abcdh"} t1="avcdv",t2="abcdh",那么第一个字符 ’a’ \texttt{'a'} ’a’ 已经有 t 1 , 1 = ’a’ t_{1,1}=\texttt{'a'} t1,1=’a’,那么直接跳。第二个字符有 t 2 , 2 = ’b’ t_{2,2}=\texttt{'b'} t2,2=’b’,第三个字符有 t 2 , 3 = ’c’ t_{2,3}=\texttt{'c'} t2,3=’c’,第四个字符没有,所以新建一条边,之后的边都需要重建。之后,在第五个字符后面的点标记一个 f l a g flag flag 表示这里有字符串作为结尾。
查找一个字符串也比较简单。比如当前的字典树里面有以下字符串:
- t 1 = "abchd" t_1=\texttt{"abchd"} t1="abchd"。
- t 2 = "aabch" t_2=\texttt{"aabch"} t2="aabch"。
- t 3 = "bhcdx" t_3=\texttt{"bhcdx"} t3="bhcdx"。
- t 4 = "bhcdxe" t_4=\texttt{"bhcdxe"} t4="bhcdxe"。
查找 s = "bhcd" s=\texttt{"bhcd"} s="bhcd",发现所有边都有,但是没有字符串标记,返回有字符串包含该前缀但是没有这个字符串。
查找 s = "abchd" s=\texttt{"abchd"} s="abchd",发现有 t 1 = s t_1=s t1=s,返回有这个字符串。
查找 s = aabcd s=\texttt{aabcd} s=aabcd,发现在 s 5 = ’d’ s_5=\texttt{'d'} s5=’d’ 没有边了,返回没有这个字符串。
int cnt,trie[MAXN][MAXT],flag[MAXN];
inline int turn(char c);//字符映射函数
inline void insert(string s){
int root=0;
for(int i=0;i<s.size();++i){
int p=turn(s[i]);
if(trie[root][p]){//有没有节点创建过
root=trie[root][p];//有就跳
}else{
root=trie[root][p]=++cnt;//没有就建边
}
}
flag[root]=true;//标记末尾
}
inline bool find(string s){
int root=0;
for(int i=0;i<s.size();++i){
int p=turn(s[i]);
if(!trie[root][p]){//如果没有,直接返回
return false;
}
root=trie[root][p];//跳
}
return flag[root];//有没有这个末尾
}
例题
这一道题目考虑贪心证明。如果在某一层, u u u 需要比 v v v 先,那么就建一条边。如果在下一层,出现了需要 v v v 比 u u u 先的情况,那就冲突了,不可能是最优。也就是判环或者用种类并查集。用 Topu 或者 Tarjan 都可以判环。
#include<bits/stdc++.h>
#define MAXN 30003
#define MAXM 26
#define MAXK MAXN*10
using namespace std;
struct node{
int nxt[MAXM];
bool end;
}tree[MAXK];
vector<string> ans;
int n,cnt,indeg[MAXM];
bool vis[MAXM][MAXM];
string s[MAXN];
inline void insert(string str){
int root=0;
for(int i=0;i<str.size();++i){
int dot=str[i]-'a';
if(!tree[root].nxt[dot]){
tree[root].nxt[dot]=++cnt;
}
root=tree[root].nxt[dot];
}
tree[root].end=true;
}
inline bool addedge(string str){
int root=0;
for(int i=0;i<str.size();++i){
int dot=str[i]-'a';
if(tree[root].end){
return false;
}
for(int j=0;j<MAXM;++j){
if(tree[root].nxt[j]&&dot!=j&&!vis[dot][j]){
++indeg[j];
vis[dot][j]=true;
}
}
root=tree[root].nxt[dot];
}
return true;
}
inline bool topusort(){
queue<int> q;
for(int i=0;i<MAXM;++i){
if(!indeg[i]){
q.push(i);
}
}
while(!q.empty()){
int front=q.front();
q.pop();
for(int i=0;i<MAXM;++i){
if(vis[front][i]){
--indeg[i];
if(!indeg[i]){
q.push(i);
}
}
}
}
for(int i=0;i<MAXM;++i){
if(indeg[i]){
return false;
}
}
return true;
}
int main(){
ios::sync_with_stdio(false);
int n;
cin>>n;
for(int i=1;i<=n;++i){
cin>>s[i];
insert(s[i]);
}
for(int i=1;i<=n;++i){
memset(indeg,0,sizeof(indeg));
memset(vis,0,sizeof(vis));
if(addedge(s[i])&&topusort()){
ans.push_back(s[i]);
}
}
cout<<ans.size();
for(int i=0;i<ans.size();++i){
cout<<endl<<ans[i];
}
return 0;
}