计算机视觉
文章平均质量分 81
HitStuHan
这个作者很懒,什么都没留下…
展开
-
基于3D Frangi滤波的血管强化方法(附代码python)
3D Frangi滤波 用于血管强化原创 2022-07-13 01:38:36 · 5800 阅读 · 16 评论 -
《卷积神经网络的Python实现》笔记3
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档《卷积神经网络的Python实现》笔记3神经网络的代码实现一、生成数据生成一组数据可视化数据二、 数据预处理中心化和归一化PCA和白化对随机切分数据预处理数据三、网络模型初始化权重前向计算算法softmax损失函数L2范数损失计算分值矩阵梯度准确率预测梯度反向传播算法四、 梯度检查五、参数优化六、训练网络七、过拟合小数据集处理八、 超参数随机搜索九、 程序组织结构十、声明神经网络的代码实现采用模拟随机生成数据,进行神经网络训练,把前原创 2021-01-08 15:43:19 · 403 阅读 · 4 评论 -
《卷积神经网络的Python实现》笔记2
《卷积神经网络的Python实现》笔记2卷积神经网络CNN卷积层卷积运算卷积层的初实现包含步长的卷积层实现批量数据的卷积层矩阵乘法的代码实现池化层全连接层卷积神经网络CNN下文将实现卷积层,池化层,全连接层的代码。对于卷积层代码将多次重复实现,主要区别在代码优化上。卷积层卷积运算import numpy as nph = 32 #输入数据的高度w = 48 #输入数据的宽度input_2Ddata = np.random.randn(h,w)output_2dData = np.rand原创 2020-12-30 03:01:41 · 476 阅读 · 2 评论 -
《卷积神经网络的Python实现》笔记
线性模型LinearClassification,线性分类中分值函数的代码实现。import numpy as npD = 784 #数据维度 28*28*1K = 10 #类型数 10个数字N = 128 #样本数量X = np.random.randn(N,D) #数据矩阵,每一行一个样本# print(X)W = 0.01*np.random.randn(D,K)# print(W)b = np.zeros((1,K))# print(b)scores = np.dot原创 2020-12-29 02:03:38 · 361 阅读 · 0 评论 -
《基于GPU加速的计算机视觉编程》学习笔记(2)
《基于GPU加速的计算机视觉编程》学习笔记(2)笔记(1)得到的结论CUDA的开发环境拥有Ubuntu16.04系统linux下查看显卡信息linux下安装CUDA工具包一个基本的CUDA C程序对如上CUDA C程序解释__global__ 前缀main函数运行在哪里呢?尖括号和数值的意思回看整个函数使用CUDA C进行并行编程配置内核参数CUDA API函数笔记(1)得到的结论当时使用的是win10系统,自己安装的显卡驱动,再下载cuda10.1进行安装,无论是使用了自定以安装还是精简(推荐)安装,原创 2020-12-26 22:23:49 · 1052 阅读 · 17 评论