初学萌新
文章平均质量分 83
HitStuHan
这个作者很懒,什么都没留下…
展开
-
《机器学习方法(第三版)—— 李航》学习笔记(四)
《机器学习方法(第三版)—— 李航》学习笔记(四)原创 2022-07-25 17:11:43 · 2106 阅读 · 4 评论 -
《机器学习方法(第三版)—— 李航》学习笔记(三)
《机器学习方法(第三版)—— 李航》学习笔记(一)附代码原创 2022-07-25 10:39:30 · 1891 阅读 · 0 评论 -
《机器学习方法(第三版)——李航》学习笔记(二)附代码
《机器学习方法(第三版)——李航》学习笔记(二)附代码原创 2022-07-22 11:16:47 · 1805 阅读 · 0 评论 -
《机器学习方法(第三版)—— 李航》学习笔记(一)附代码
《机器学习方法(第三版)》李航,学习笔记(一)。原创 2022-07-21 16:31:32 · 10216 阅读 · 0 评论 -
《迁移学习》学习笔记(一)
文章目录前言一、绪论(一).迁移学习的概念二、使用步骤1.引入库2.读入数据总结前言鄙人正在准备医学图像处理的预面试,想要简单了解一下有关迁移学习的相关内容,所以编写了此学习笔记。学习笔记主要目的是记录自己的学习过程,以便后续翻看复习;次要目的是与广大程序员朋友们交流。如果有发现理解有误或者编写出错的地方,还望各位斧正。学习迁移学习,我这里首先参考的是机械工业出版社出版的由杨强、张宇教授主编的《迁移学习》一书。后文的笔记内容也是大量引用书中的原句,如有侵权请速与我联系。一、绪论(一).迁移学.原创 2021-06-18 08:06:18 · 507 阅读 · 0 评论 -
Apriori算法的Python实现
文章目录前言一、环境配置二、读入文件1.数据集格式2.读入数据三、Apriori四、全部代码前言本人代码能力确实有限,算法实现比较粗糙,并且在实现Apriori算法的时候,写了之后才想到了更好的实现方法,但是当时已经凌晨两点了,就懒得再改了,这也导致后续跑大数据集的时候很慢!!!!算法的原理主要是根据人民邮电出版社出版的《数据挖掘与分析 概念与算法》一书中p192,算法8.2一、环境配置这里我是用的是Anaconda3 python=3.7的环境,如果没有能力装Anaconda的话,只要一个py.原创 2021-06-16 16:53:25 · 2609 阅读 · 0 评论 -
《卷积神经网络的Python实现》笔记3
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档《卷积神经网络的Python实现》笔记3神经网络的代码实现一、生成数据生成一组数据可视化数据二、 数据预处理中心化和归一化PCA和白化对随机切分数据预处理数据三、网络模型初始化权重前向计算算法softmax损失函数L2范数损失计算分值矩阵梯度准确率预测梯度反向传播算法四、 梯度检查五、参数优化六、训练网络七、过拟合小数据集处理八、 超参数随机搜索九、 程序组织结构十、声明神经网络的代码实现采用模拟随机生成数据,进行神经网络训练,把前原创 2021-01-08 15:43:19 · 403 阅读 · 4 评论 -
《卷积神经网络的Python实现》笔记2
《卷积神经网络的Python实现》笔记2卷积神经网络CNN卷积层卷积运算卷积层的初实现包含步长的卷积层实现批量数据的卷积层矩阵乘法的代码实现池化层全连接层卷积神经网络CNN下文将实现卷积层,池化层,全连接层的代码。对于卷积层代码将多次重复实现,主要区别在代码优化上。卷积层卷积运算import numpy as nph = 32 #输入数据的高度w = 48 #输入数据的宽度input_2Ddata = np.random.randn(h,w)output_2dData = np.rand原创 2020-12-30 03:01:41 · 476 阅读 · 2 评论 -
《卷积神经网络的Python实现》笔记
线性模型LinearClassification,线性分类中分值函数的代码实现。import numpy as npD = 784 #数据维度 28*28*1K = 10 #类型数 10个数字N = 128 #样本数量X = np.random.randn(N,D) #数据矩阵,每一行一个样本# print(X)W = 0.01*np.random.randn(D,K)# print(W)b = np.zeros((1,K))# print(b)scores = np.dot原创 2020-12-29 02:03:38 · 361 阅读 · 0 评论 -
《基于GPU加速的计算机视觉编程》学习笔记
《基于GPU加速的计算机视觉编程》学习笔记(1)最近打算准备工作CUDA开发环境(主要是查看N卡的信息)在WIN10下安装CUDA工具包最近打算在训练模型的时候,感觉电脑非常吃力,很难按时完成理想的工作。网上找了些关于CUDA安装教学的帖子,也是遇到了种种的BUG,最后也把项目搁置了。直到最近,期末考试也差不多结束了,就去图书馆看看有没有关于计算机视觉的书,偶然间发现了这本机械工业出版社出版的**《基于GPU加速的计算机视觉编程》** 一书。就决定趁着这一段时间来学习一下这本书的内容。本人打算边学边记,原创 2020-12-26 00:01:54 · 1300 阅读 · 0 评论 -
序列挖掘——SPADE的python实现
def arrange(list,minsup):sigma=[]for itemset in list:for item in itemset:if item not in sigma:sigma.append(item)print(sigma)dic={}for name in sigma:idic={}for i in range(len(list)):s=[]for...原创 2019-08-13 19:57:13 · 1547 阅读 · 2 评论 -
项集挖掘——Eclat->dEclat的python实现
def Sigma(sequence):sigma=set()for itemset in sequence:for item in itemset:if item not in sigma:sigma.add(item)return sigmadef VirticalDataset(sequence,sigma,minsup):dic={}for item in sigma:...原创 2019-08-13 19:55:39 · 1026 阅读 · 0 评论 -
Prefixspan理论基础
prefixspan算法在流水交易中的挖掘序列:Sequence序列是一个完整的信息流,每个序列由不同元素按顺序排列,每个元素代表一个事件。这里的事务排序是以时间为基准区分的。子序列:对于两个序列t、s,如果t中的每个有序元素都是s中的一个元素的子集,那么t是s的子序列。支持度:support见Apriori算法,概念大同小异。前缀:prefix对于序列A和B,A中有n个事件,若...原创 2019-06-21 17:46:44 · 363 阅读 · 0 评论 -
Apriori算法相关基础知识学习过程
3月31日六、关联分析:基本概念和算法(一)、概念:1、二元表示:用0表示存在,用1表示不存在。也称二元0/1表示。2、项集:包含0个或者多个项的集合称为项集。一个项集包含K个项,称为K-项集。3、事务:包含同类数据的项集的集合(按特定性质的分类)。事务的宽度定义为事务中出现项的个数。4、支持度系数:包含特定项集的事务个数。σ(X)表示。5、关联规则:关联规则是形如X→Y的蕴含表达式...原创 2019-06-20 15:31:47 · 866 阅读 · 0 评论 -
Apriori算法的python实现
def listSet(targetList):#生成不含有重复项的列表newList=[]for listItem in targetList:newList.append(list(set(listItem)))return newListdef list1Creation(newList):#生成1-项集list1=[]for listItem in newList:for ...原创 2019-06-20 15:25:10 · 1269 阅读 · 0 评论