程序员面试智力题(六)

【36】从前有一位老钟表匠,为一个教堂装一只大钟。他年老眼花,把长短针装配错了,短针走的速度反而是长针的12倍。装配的时候是上午6点,他把短针指在“6 ”上,长针指在“12”上。老钟表匠装好就回家去了。人们看这钟一会儿7点,过了不一会儿就8点了,都很奇怪,立刻去找老钟表匠。等老钟表匠赶到,已经是下午7点多钟。他掏出怀表来一对,钟准确无误,疑心人们有意捉弄他,一生气就回去了。这钟还是8点、9点地跑,人们再去找钟表匠。老钟表匠第二天早晨8点多赶来用表一对,仍旧准确无误。请你想一想,老钟表匠第一次对表的时候是7点几分?第二次对表又是8点几分? 
答案:7点x分:(7+x/60)/12=x/60 x=7*60=420/11=38.2 
第一次是7点38分,第二次是8点44分 

【37】今有2匹马、3头牛和4只羊,它们各自的总价都不满10000文钱(古时的货币单位)。如果2匹马加上1头牛,或者3 头牛加上1只羊,或者4只羊加上1匹马,那么它们各自的总价都正好是10000文钱了。问:马、牛、羊的单价各是多少文钱? 
答案:3600 2800 1600 
【38】一天,harlan的店里来了一位顾客,挑了25元的货,顾客拿出100元,harlan没零钱找不开,就到隔壁飞白的店里把这100元换成零钱,回来给顾客找了75元零钱。过一会,飞白来找harlan,说刚才的是假钱,harlan马上给飞白换了张真钱,问harlan赔了多少钱? 
答案:100  
【39】猴子爬绳这道力学怪题乍看非常简单,可是据说它却使刘易斯.卡罗尔感到困惑。至于这道怪题是否由这位因《爱丽丝漫游奇境记》而闻名的牛津大学数学专家提出来的,那就不清楚了。总之,在一个不走运的时刻,他就下述问题征询人们的意见:一根绳子穿过无摩擦力的滑轮,在其一端悬挂着一只10磅重的砝码,绳子的另一端有只猴子,同砝码正好取得平衡。当猴子开始向上爬时,砝码将如何动作呢?"真奇怪,"卡罗尔写道,"许多优秀的数学家给出了截然不同的答案。普赖斯认为砝码将向上升,而且速度越来越快。克利夫顿(还有哈考特)则认为,砝码将以与猴子一样的速度向上升起,然而桑普森却说,砝码将会向下降!"一位杰出的机械工程师说"这不会比苍蝇在绳子上爬更起作用",而一位科学家却认为"砝码的上升或下降将取决于猴子吃苹果速度的倒数",然而还得从中求出猴子尾巴的平方根。严肃地说,这道题目非常有趣,值得认真推敲。它很能说明趣题与力学问题之间的紧密联系。 
答案:砝码将以与猴子相同的速度上升,因为它们质量相同,受力也相同。  


【40】两个空心球,大小及重量相同,但材料不同。一个是金,一个是铅。空心球表面图有相同颜色的油漆。现在要求在不破坏表面油漆的条件下用简易方法指出哪个是金的,哪个是铅的。 
答案:旋转看速度,金的密度大,质量相同,所以金球的实际体积较小,因为外半径相同,所以金球的内半径较大,所以金球的转动惯量大,在相同的外加力矩之下,金球的角加速度较小,所以转得慢。  
【41】有23枚硬币在桌上,10枚正面朝上。假设别人蒙住你的眼睛,而你的手又摸不出硬币的反正面。让你用最好的方法把这些硬币分成两堆,每堆正面朝上的硬币个数相同。 
答案:分成10+13两堆, 然后翻转10的那堆  


【42】三个村庄A、B、C和三个城镇A、B、C坐落在如图所示的环形山内。由于历史原因,只有同名的村与镇之间才有来往。为方便交通,他们准备修铁路。问题是:如何在这个环形山内修三条铁路连通A村与A镇, B村与B镇,C村与C镇。而这些铁路相互不能相交。(挖山洞、修立交桥都不算,绝对是平面问题)。想出答案再想想这个题说明什么问题。 
 答案如右图:  
【43】屋里三盏灯泡,屋外三个开关,一个开关仅控制一盏灯,屋外看不到屋里怎样只进屋一次,就知道哪个开关控制哪盏灯?四盏呢~ 
答案:温度,先开一盏,足够长时间后关了,开另一盏,进屋看,亮的为后来开的,摸起来热的为先开的,剩下的一盏也就确定了。 
四盏的情况:设四个开关为ABCD,先开AB,足够长时间后关B开C,然后进屋,又热又亮为A,只热不亮为B,只亮不热为C,不亮不热为D。 

【44】2+7-2+7全部有火柴根组成,移动其中任何一根,答案要求为30说明:因为书写问题作如下解释,2是由横折横三根组成,7是由横折两根组成 
1, 改变赋值号.比如+,-,= 
2, 注意质数. 
3, 可能把画面颠倒过来. 
4, 然后就可以去考虑更改其他数字更改了 
答案:247-217=30 
【45】5名海盗抢得了窖藏的100块金子,并打算瓜分这些战利品。这是一些讲民主的海盗(当然是他们自己特有的民主),他们的习惯是按下面的方式进行分配:最厉害的一名海盗提出分配方案,然后所有的海盗(包括提出方案者本人)就此方案进行表决。如果50%或更多的海盗赞同此方案,此方案就获得通过并据此分配战利品。否则提出方案的海盗将被扔到海里,然后下一名最厉害的海盗又重复上述过程。所有的海盗都乐于看到他们的一位同伙被扔进海里,不过,如果让他们选择的话,他们还是宁可得一笔现金。他们当然也不愿意自己被扔到海里。所有的海盗都是有理性的,而且知道其他的海盗也是有理性的。此外,没有两名海盗是同等厉害的——这些海盗按照完全由上到下的等级排好了座次,并且每个人都清楚自己和其他所有人的等级。这些金块不能再分,也不允许几名海盗共有金块,因为任何海盗都不相信他的同伙会遵守关于共享金块的安排。这是一伙每人都只为自己打算的海盗。最凶的一名海盗应当提出什么样的分配方案才能使他获得最多的金子呢? 
答案:如果轮到第四个海盗分配:100,0 
轮到第三个:99,0,1 
轮到第二个:98,0,1,0 
轮到第一个:97,0,1,0,2,这就是第一个海盗的最佳方案。
 
【46】他们中谁的存活机率最大? 
5个囚犯,分别按1-5号在装有100颗绿豆的麻袋抓绿豆,规定每人至少抓一颗,而抓得最多和最少的人将被处死,而且,他们之间不能交流,但在抓的时候,可以摸出剩下的豆子数。问他们中谁的存活几率最大?提示:       
1,他们都是很聪明的人       
2,他们的原则是先求保命,再去多杀人       
3,100颗不必都分完       
4,若有重复的情况,则也算最大或最小,一并处死 
答案:第一个人选择17时最优的。它有先动优势。他确实有可能被逼死,后面的2、3、4号也想把1号逼死,但做不到(起码确定性逼死做不到) 
可以看一下,如果第1个人选择21,他的信息时暴露给第2个人的,那么,1号就将自己暴露在一个非常不利的环境下,2-4号就会选择20,五号就会被迫在1-19中选择,则1、5号处死。所以1号不会这样做,会选择一个更小的数。 
1号选择一个 
下面决定的就是1号会选择一个什么数,他仍然不会选择一个太大或太小的数,因为那样仍然是自己处于不利的地位(2-4号肯定不会留情面的),100/6=16.7(为什么除以6?因为5号会随机选择一个数,对1号来说要尽可能的靠近中央,2-4好也是如此,而且正因为2-4号如此,1号才如此... ...),最终必然是在16、17种选择的问题。 
对16、17进行概率的计算之后,就得出了3个人选择17,第四个人选择16时,为均衡的状态,第4号虽然选择16不及前三个人选择17生存的机会大,但是若选择17则整个游戏的人必死(包括他自己)!第3号没有动力选择16,因为计算概率可知生存机会不如17。 
所以选择为17、17、17、16、X(1-33随机),1-3号生存机会最大。 

【47】有5只猴子在海边发现 一堆桃子,决定第二天来平分.第二天清晨,第一只猴子最早来到,它左分右分分不开,就朝海里扔了一只,恰好可以分成5份,它拿上自己的一份走了.第 2,3,4,5只猴子也遇到同样的问题,采用了同样的方法,都是扔掉一只后,恰好可以分成5份.问这堆桃子至少有多少只? 
答案:这堆桃子至少有3121只。 
第一只猴子扔掉1个,拿走624个,余2496个; 
第二只猴子扔掉1个,拿走499个,余1996个; 
第三只猴子扔掉1个,拿走399个,余1596个; 
第四只猴子扔掉1个,拿走319个,余1276个; 
第五只猴子扔掉1个,拿走255个,余4堆,每堆255个。 
如果不考虑正负,-4为一解 
考虑到要5个猴子分,假设分n次。 
则题目的解: 5^n-4 
本题为5^5-4=3121. 
设共a个桃,剩下b个桃,则b=(4/5)((4/5)((4/5)((4/5)((4/5)(a-1)-1)-1)-1)-1)-1),即b=(1024a-8404)/3125 ; a=3b+8+53*(b+4)/1024,而53跟1024不可约,则令b=1020可有最小解,得a=3121 ,设桃数x,得方程 
4/5{4/5{4/5[4/5(x-1)-1]-1}-1}=5n 
展开得 
256x=3125n+2101 
故x=(3125n+2101)/256=12n+8+53*(n+1)/256 
因为53与256不可约,所以判断n=255有一解.x为整数,等于3121 

【48】话说某天一艘海盗船被天下砸下来的一头牛给击中了,5个倒霉的家伙只好逃难到一个孤岛,发现岛上孤零零的,幸好有有棵椰子树,还有一只猴子!大家把椰子全部采摘下来放在一起,但是天已经很晚了,所以就睡觉先. 
晚上某个家伙悄悄的起床,悄悄的将椰子分成5份,结果发现多一个椰子,顺手就给了幸运的猴子,然后又悄悄的藏了一份,然后把剩下的椰子混在一起放回原处,最后还是悄悄滴回去睡觉了. 
过了会儿,另一个家伙也悄悄的起床,悄悄的将剩下的椰子分成5份,结果发现多一个椰子,顺手就又给了幸运的猴子,然后又悄悄滴藏了一份,把剩下的椰子混在一起放回原处,最后还是悄悄滴回去睡觉了. 
又过了一会 ...... 
又过了一会 ... 
总之5个家伙都起床过,都做了一样的事情。早上大家都起床,各自心怀鬼胎的分椰子了,这个猴子还真不是一般的幸运,因为这次把椰子分成5分后居然还是多一个椰子,只好又给它了.问题来了,这堆椰子最少有多少个? 
答案:这堆椰子最少有15621 
第一个人给了猴子1个,藏了3124个,还剩12496个; 
第二个人给了猴子1个,藏了2499个,还剩9996个; 
第三个人给了猴子1个,藏了1999个,还剩7996个; 
第四个人给了猴子1个,藏了1599个,还剩6396个; 
第五个人给了猴子1个,藏了1279个,还剩5116个; 
最后大家一起分成5份,每份1023个,多1个,给了猴子。 

【49】小明和小强都是张老师的学生,张老师的生日是M月N日,2人都知道张老师的生日是下列10组中的一天,张老师把M值告诉了小明,把N值告诉了小强,张老师问他们知道他的生日是那一天吗? 
3月4日 3月5日 3月8日 
6月4日 6月7日 
9月1日 9月5日 
12月1日 12月2日 12月8日 
小明说:如果我不知道的话,小强肯定也不知道 
小强说:本来我也不知道,但是现在我知道了 
小明说:哦,那我也知道了 
请根据以上对话推断出张老师的生日是哪一天 
答案:9.1  
【50】一逻辑学家误入某部落,被囚于牢狱,酋长欲意放行,他对逻辑学家说:“今有两门,一为自由,一为死亡,你可任意开启一门。现从两个战士中选择一人负责解答你所提的任何一个问 题(Y/N),其中一个天性诚实,一人说谎成性,今后生死任你选择。”逻辑学家沉思片刻,即向一战士发问,然后开门从容离去。逻辑学家应如何发问? 
问:如果我问另一个人死亡之门在哪里,他会怎么回答? 
答案:最终得到的回答肯定是指向自由之门的。  
【51】说从前啊,有一个富 人,他有30个孩子,其中15个是已故的前妻所生,其余15个是继室所生,这后一个妇人很想让她自己所生的最年长的儿子继承财产,于是,有一天,他就向他 说:"亲爱的丈夫啊,你就要老了,我们应该定下来谁将是你的继承人,让我们把我们的30个孩子排成一个圆圈,从他们中的一个数起,每逢到10就让那个孩子 站出去,直到最后剩下哪个孩子,哪个孩子就继承你的财产吧!"富人一想,我靠,这个题意相当有内涵了,不错,仿佛很公平,就这么办吧~不过,当剔选过程不 断进行下去的时候,这个富人傻眼了,他发现前14个被剔除的孩子都是前妻生的,而且下一个要被剔除的还是前妻生的,富人马上大手一挥,停,现在从这个孩子 倒回去数, 继室,就是这个歹毒的后妈一想,倒数就倒数,我15个儿子还斗不过你一个啊~她立即同意了富人的动议,你猜,到底谁做了继承人呢~ 
答案:老婆的儿子  
【52】“有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。” 
答案:设牛每天吃掉x,草每天长出y,原来有牧场的草量是a 
a=(27x-y)*6=(23x-y)*9 
可解出y=15x,a=72x,所以a=(21x-y)*12,所以需要12天。 

【53】一个商人骑一头驴要穿越1000公里长的沙漠,去卖3000根胡萝卜。已知驴一次性可驮1000根胡萝卜,但每走一公里又要吃掉一根胡萝卜。问:商人共可卖出多少胡萝卜? 
答案:商人带驴驮1000根胡萝卜,先走250公里,这时,驴已吃250根,放下500根,原地返回,又吃掉250根。商人再带驴驮1000根胡萝卜,走到250公里处,这时,驴已吃250根,再驮上原先放的500根中的250根,继续前行至500公里处,这时,驴又吃250根,放下500根,剩250根返回250公里处,在驮上250公里处剩下的250根返回原地,这时驴又吃250根。商人再带驴驮1000根胡萝卜,走到500公里处,这时,驴已吃500根,再驮上原先放的500根,走出沙漠,驴吃掉500根,还剩500根。  
【54】10箱黄金,每箱100块,每块一两。有贪官,把某一箱的每块都磨去一钱。请称一次找到不足量的那个箱子 
答案:第一箱子拿1块,第二箱子拿2块, 第n箱子拿n块,然后放在一起称,看看缺了几钱,缺了n钱就说明是第n个箱子 
【55】你让工人为你工作7天,给工人的回报是一根金条。金条平分成相连的7段,你必须在每天结束时都付费,如果只许你两次把金条弄断,你如何给你的工人付费? 
答案:把金条分成1,2,4三段。第一天1,第二天2,第三天1+2……第七天1+2+4。 
【56】有十瓶药,每瓶里都装有100片药(仿佛现在装一百片的少了,都是十片二十片的,不管,咱们就这么来了),其中有八瓶里的药每片重10克,另有两瓶里的药每片重9克。用一个蛮精确的小秤,只称一次,如何找出份量较轻的那两个药瓶? 
答案:等同54,但此题有一些变化,与众不同的瓶子有两个,只称一次的话,只能得到两个瓶子所缺的克数的总和,我们必须保证能从总和中唯一地得出两个瓶子的所缺数。第一个瓶可拿出1片,第二个拿2片,第三个拿3片,但第四个不能拿4片,因为如果结果缺了5克的话,你就不知道是缺了2+3还是1+4。所以第四个应拿5片,第五个应拿8片,第n个应拿a(n-1)+a(n-2)片。 
【57】一个经理有三个女儿, 三个女儿的年龄加起来等于13,三个女儿的年龄乘起来等于经理自己的年龄,有一个下属已知道经理的年龄,但仍不能确定经理三个女儿的年龄,这时经理说只有,一个女儿的头发是黑的,然后这个下属就知道了经理三个女儿的年龄。请问三个女儿的年龄分别是多少?为什么? 
答案:显然3个女儿的年龄都不为0,要不爸爸就为0岁了,因此女儿的年龄都大于等于1岁。这样可以得下面的情况:1*1*11=11,1*2**10=20,1*3*9=27,1*4*8=32,1*5*7=35,{1*6*6=36},{2*2*9=36},2*3*8=48,2*4*7=56,2*5*6=60,3*3*7=63,3*4*6=72,3*5*5=75,4*4*5=80因为下属已知道经理的年龄,但仍不能确定经理三个女儿的年龄,说明经理是36岁(因为{1*6*6=36},{2*2*9=36}),所以3个女儿的年龄只有2种情况,经理又说只有一个女儿的头发是黑的,说明只有一个女儿是比较大的,其他的都比较小,头发还没有长成黑色的,所以3个女儿的年龄分别为2,2,9! 
【58】有三个人去住旅馆,住 三间房,每一间房?元,于是他们一共付给老板?,第二天,老板觉得三间房只需要?元就够了于是叫小弟退回?给三位客人,谁知小弟贪心,只退 回每人?,自己偷偷拿了ū,这样一来便等于那三位客人每人各花了九元,于是三个人一共花了?,再加上小弟独吞了不ū,总共是?。可是当初他 们三个人一共付出?那么还有?呢? 
答案:应该是三个人付了9*3=27,其中2付给了小弟,25付给了老板 
【59】有两位盲人,他们都各自买了两对黑袜和两对白袜,八对袜了的布质、大小完全相同,而每对袜了都有一张商标纸连着。两位盲人不小心将八对袜了混在一起。他们每人怎样才能取回黑袜和白袜各两对呢? 
答案:拆开所有的袜子,每人一个 
【60】有一辆火车以每小时 15公里的速度离开洛杉矶直奔纽约,另一辆火车以每小时20公里的速度从纽约开往洛杉矶。如果有一只鸟,以30公里每小时的速度和两辆火车同时启动,从洛杉矶出发,碰到另一辆车后返回,依次在两辆火车来回飞行,直到两辆火车相遇,请问,这只小鸟飞行了多长距离? 
答案:设总距离为d,总共用时d/(15+20),两车相遇,所以鸟飞了30*d/(15+20)=6d/7 
【61】你有两个罐子,每个罐子各有若干红色弹球和蓝色弹球,两个罐子共有50个红色弹球,50个蓝色弹球,随机选出一个罐子,随机从中选取出一个弹球,要使取出的是红球的概率最大,一开始两个罐子应放几个红球,几个蓝球?在你的计划中,得到红球的准确几率是多少? 
答案:一个罐子放1红,一个罐子放49红和50蓝,这样得到红球的概率接近3/4。 
【62】你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1.只称量一次,如何判断哪个罐子的药被污染了? 
与前面的54,56题相似。 
【63】对一批编号为1~100,全部开关朝上(开)的灯进行以下操作:凡是1的倍数反方向拨一次开关;2的倍数反方向又拨一次开关;3的倍数反方向又拨一次开关……问:最后为关熄状态的灯的编号。 
答案:1 4 9 
【64】想象你在镜子前,请问,为什么镜子中的影像可以颠倒左右,却不能颠倒上下? 
答案:实际上镜子并没有颠倒左右,而是颠倒前后。 
【65】一群人开舞会,每人头 上都戴着一顶帽子。帽子只有黑白两种,黑的至少有一顶。每个人都能看到其它人帽子的颜色,却看不到自己的。主持人先让大家看看别人头上戴的是什幺帽子,然 后关灯,如果有人认为自己戴的是黑帽子,就打自己一个耳光。第一次关灯,没有声音。于是再开灯,大家再看一遍,关灯时仍然鸦雀无声。一直到第三次关灯,才 有劈劈啪啪打耳光的声音响起。问有多少人戴着黑帽子? 
答案:3 。如果只有1人戴黑帽子,那么第一次关灯他就会打自己耳光;如果有2人,第二次关灯他们就会打自己耳光;有n人戴帽子的话第n次关灯他们就会打自己耳光。 
【66】两个圆环,半径分别是1和2,小圆在大圆内部绕大圆圆周一周,问小圆自身转了几周?如果在大圆的外部,小圆自身转几周呢? 
答案:把大圆剪断拉直。小圆绕大圆圆周一周,就变成从直线的一头滚至另一头。因为直线长就是大圆的周长,是小圆周长的2倍,所以小圆要滚动2圈。 
但是现在小圆不是沿直线而是沿大圆滚动,小圆因此还同时作自转,当小圆沿大圆滚动1周回到原出发点时,小圆同时自转1周。当小圆在大圆内部滚动时自转的方向与滚动的转向相反,所以小圆自身转了1周。当小圆在大圆外部滚动时自转的方向与滚动的转向相同,所以小圆自身转了3周。 
这一题非常有迷惑性,小圆在外部时其实是3圈,你可以拿个硬币试试可以把圆看成一根绳子,长绳是短绳的2倍长,假设长绳开始接口在最底下,短绳接口在长绳接口处,然后短绳开始顺时针绕,当短绳接口对着正左时,这时其实才绕了长绳的1/4,转了180+90度,所以绕一圈是270*4=360*3 。同理小圆在内部时是1圈。也可以套用下列公式: 两圆圆心距/转动者半径=转动者切另一圆时的自转数!! 

【67】 1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水? 
答案:40瓶,20+10+5+2+1+1=39, 这时还有一个空瓶子,先向店主借一个空瓶,换来一瓶汽水喝完后把空瓶还给店主。 
【68】有3顶红帽子,4顶黑 帽子,5顶白帽子。让10个人从矮到高站成一队,给他们每个人头上戴一顶帽子。每个人都看不见自己戴的帽子的颜色,却只能看见站在前面那些人的帽子颜色。 (所以最后一个人可以看见前面9个人头上帽子的颜色,而最前面那个人谁的帽子都看不见。现在从最后那个人开始,问他是不是知道自己戴的帽子颜色,如果他回 答说不知道,就继续问他前面那个人。假设最前面那个人一定会知道自己戴的是黑帽子。为什么? 
“有3顶黑帽子,2顶白帽子。让三个人从前到后站成一排,给他们每个人头上戴一顶帽子。每个人都看不见自己戴的帽子的颜色,却只能看见站在前面那些人的帽子颜色。(所以最后一个人可以看见前面两个人头上帽子的颜色,中间那个人看得见前面那个人的帽子颜色但看不见在他后面那个人的帽子颜色,而最前面那个人谁的帽子都看不见。现在从最后那个人开始,问他是不是知道自己戴的帽子颜色,如果他回答说不知道,就继续问他前面那个人。事实上他们三个戴的都是黑帽子,那么最前面那个人一定会知道自己戴的是黑帽子。为什么?” 
 答案: 答案是,最前面的那个人听见后面两个人都说了“不知道”,他假设自己戴的是白帽子,于是中间那个人就看见他戴的白帽子。那么中间那个人会作如下推理:“假设我戴了白帽子,那么最后那个人就会看见前面两顶白帽子,但总共只有两顶白帽子,他就应该明白他自己戴的是黑帽子,现在他说不知道,就说明我戴了白帽子这个假定是错的,所以我戴了黑帽子。”问题是中间那人也说不知道,所以最前面那个人知道自己戴白帽子的假定是错的,所以他推断出自己戴了黑帽子。 
  我们把这个问题推广成如下的形式: 
  “有若干种颜色的帽子,每种若干顶。假设有若干个人从前到后站成一排,给他们每个人头上戴一顶帽子。每个人都看不见自己戴的帽子的颜色,而且每个人都看得见在他前面所有人头上帽子的颜色,却看不见在他后面任何人头上帽子的颜色。现在从最后那个人开始, 
问他是不是知道自己戴的帽子颜色,如果他回答说不知道,就继续问他前面那个人。一直往前问,那么一定有一个人知道自己所戴的帽子颜色。” 
  当然要假设一些条件: 
1)首先,帽子的总数一定要大于人数,否则帽子都不够戴。 
2)“有若干种颜色的帽子,每种若干顶,有若干人”这个信息是队列中所有人都事先知道的,而且所有人都知道所有人都知道此事,所有人都知道所有人都知道所有人都知道此事,等等等等。但在这个条件中的“若干”不一定非要具体一一给出数字来。 
这个信息具体地可以是象上面经典的形式,列举出每种颜色帽子的数目“有3顶黑帽子,2顶白帽子,3个人”,也可以是“有红黄绿三种颜色的帽子各1顶2顶3顶,但具体不知道哪种颜色是几顶,有6个人”,甚至连具体人数也可以不知道,“有不知多少人排成一排,有黑白两种帽子,每种帽子的数目都比人数少1”,这时候那个排在最后的人并不知道自己排在最后——直到开始问他时发现在他回答前没有别人被问到,他才知道他在最后。在这个帖子接下去的部分当我出题的时候我将只写出“有若干种颜色的帽子,每种若干顶,有若干人”这个预设条件,因为这部分确定了,题目也就确定了。 
3)剩下的没有戴在大家头上的帽子当然都被藏起来了,队伍里的人谁都不知道都剩下些什么帽子。 
4)所有人都不是色盲,不但不是,而且只要两种颜色不同,他们就能分别出来。当然他们的视力也很好,能看到前方任意远的地方。他们极其聪明,逻辑推理是极好的。总而言之,只要理论上根据逻辑推导得出来,他们就一定推导得出来。相反地如果他们推不出自己头上帽子的颜色,任何人都不会试图去猜或者作弊偷看——不知为不知。 
5)后面的人不能和前面的人说悄悄话或者打暗号。 
当然,不是所有的预设条件都能给出一个合理的题目。比如有99顶黑帽子,99顶白帽子,2个人,无论怎么戴,都不可能有人知道自己头上帽子的颜色。另外,只要不是只有一种颜色的帽子,在只由一个人组成的队伍里,这个人也是不可能说出自己帽子的颜色的。 
  但是下面这几题是合理的题目: 
1)3顶红帽子,4顶黑帽子,5顶白帽子,10个人。 
2)3顶红帽子,4顶黑帽子,5顶白帽子,8个人。 
3)n顶黑帽子,n-1顶白帽子,n个人(n>0)。 
4)1顶颜色1的帽子,2顶颜色2的帽子,……,99顶颜色99的帽子,100顶颜色100的帽子,共5000个人。 
5)有红黄绿三种颜色的帽子各1顶2顶3顶,但具体不知道哪种颜色是几顶,有6个人。 
6)有不知多少人(至少两人)排成一排,有黑白两种帽子,每种帽子的数目都比人数少1。 
  大家可以先不看我下面的分析,试着做做这几题。 
  如果按照上面3顶黑帽2顶白帽时的推理方法去做,那么10个人就可以把我们累死,别说5000个人了。但是3)中的n是个抽象的数,考虑一下怎么解决这个问题,对解决一般的问题大有好处。 
  假设现在n个人都已经戴好了帽子,问排在最后的那一个人他头上的帽子是什么颜色,什么时候他会回答“知道”?很显然,只有在他看见前面n-1个人都戴着白帽时才可能,因为这时所有的n-1顶白帽都已用光,在他自己的脑袋上只能顶着黑帽子,只要前面有一顶黑帽子,那么他就无法排除自己头上是黑帽子的可能——即使他看见前面所有人都是黑帽,他还是有可能戴着第n顶黑帽。 
  现在假设最后那个人的回答是“不知道”,那么轮到问倒数第二人。根据最后面那位的回答,他能推断出什么呢?如果他看见的都是白帽,那么他立刻可以推断出自己戴的是黑帽——要是他也戴着白帽,那么最后那人应该看见一片白帽,问到他时他就该回答“知道”了。但是如果倒数第二人看见前面至少有一顶黑帽,他就无法作出判断——他有可能戴着白帽,但是他前面的那些黑帽使得最后那人无法回答“知道”;他自然也有可能戴着黑帽。 
  这样的推理可以继续下去,但是我们已经看出了苗头。最后那个人可以回答“知道”当且仅当他看见的全是白帽,所以他回答“不知道”当且仅当他至少看见了一顶黑帽。这就是所有帽子颜色问题的关键! 
  如果最后一个人回答“不知道”,那么他至少看见了一顶黑帽,所以如果倒数第二人看见的都是白帽,那么最后那个人看见的至少一顶黑帽在哪里呢?不会在别处,只能在倒数第二人自己的头上。这样的推理继续下去,对于队列中的每一个人来说就成了: 
  “在我后面的所有人都看见了至少一顶黑帽,否则的话他们就会按照相同的判断断定自己戴的是黑帽,所以如果我看见前面的人戴的全是白帽的话,我头上一定戴着我身后那个人看见的那顶黑帽。” 
  我们知道最前面的那个人什么帽子都看不见,就不用说看见黑帽了,所以如果他身后的所有人都回答说“不知道”,那么按照上面的推理,他可以确定自己戴的是黑帽,因为他身后的人必定看见了一顶黑帽——只能是第一个人他自己头上的那顶。事实上很明显,第一个说出自己头上是什么颜色帽子的那个人,就是从队首数起的第一个戴黑帽子的人,也就是那个从队尾数起第一个看见前面所有人都戴白帽子的人。 
  这样的推理也许让人觉得有点循环论证的味道,因为上面那段推理中包含了“如果别人也使用相同的推理”这样的意思,在逻辑上这样的自指式命题有点危险。但是其实这里没有循环论证,这是类似数学归纳法的推理,每个人的推理都建立在他后面那些人的推理上,而对于最后一个人来说,他的身后没有人,所以他的推理不依赖于其他人的推理就可以成立,是归纳中的第一个推理。稍微思考一下,我们就可以把上面的论证改得适合于任何多种颜色的推论: 
  “如果我们可以从假设断定某种颜色的帽子一定会在队列中出现,从队尾数起第一个看不见这种颜色的帽子的人就立刻可以根据和此论证相同的论证来作出判断,他戴的是这种颜色的帽子。现在所有我身后的人都回答不知道,所以我身后的人也看见了此种颜色的帽子。如果在我前面我见不到此颜色的帽子,那么一定是我戴着这种颜色的帽子。” 
当然第一个人的初始推理相当简单:“队列中一定有人戴这种颜色的帽子,现在我看不见前面有人戴这颜色的帽子,那它只能是戴在我的头上了。” 
  对于题1)事情就变得很明显,3顶红帽子,4顶黑帽子,5顶白帽子给10个人戴,队列中每种颜色至少都该有一顶,于是从队尾数起第一个看不见某种颜色的帽子的人就能够断定他自己戴着这种颜色的帽子,通过这点我们也可以看到,最多问到从队首数起的第三人时,就应该有人回答“知道”了,因为从队首数起的第三人最多只能看见两顶帽子,所以最多看见两种颜色,如果他后面的人都回答“不知道”,那么他前面一定有两种颜色的帽子,而他头上戴的一定是他看不见的那种颜色的帽子。 
  题2)也一样,3顶红帽子,4顶黑帽子,5顶白帽子给8个人戴,那么队列中一定至少有一顶白帽子,因为其它颜色加起来一共才7顶,所以队列中一定会有人回答“知道”。 
  题4)的规模大了一点,但是道理和2)完全一样。100种颜色的5050顶帽子给5000人戴,前面99种颜色的帽子数量是1+……+99=4950,所以队列中一定有第100种颜色的帽子(至少有50顶),所以如果自己身后的人都回答“不知道”,那么那个看不见颜色100帽子的人就可以断定自己戴着这种颜色的帽子。 
  至于5)、6)“有红黄绿三种颜色的帽子各1顶2顶3顶,但具体不知道哪种颜色是几顶,有6个人”以及“有不知多少人排成一排,有黑白两种帽子,每种帽子的数目都比人数少1”,原理完全相同,我就不具体分析了。 
  最后要指出的一点是,上面我们只是论证了,如果我们可以根据各种颜色帽子的数量和队列中的人数判断出在队列中至少有一顶某种颜色的帽子,那么一定有一人可以判断出自己头上的帽子的颜色。因为如果所有身后的人都回答“不知道”的话,那个从队尾数起第一个看不见这种颜色的帽子的人就可以判断自己戴了此颜色的帽子。但是这并不是说在询问中一定是由他来回答“知道”的,因为还可能有其他的方法来判断自己头上帽子的颜色。比如说在题2)中,如果队列如下:(箭头表示队列中人脸朝的方向) 
    白白黑黑黑黑红红红白→ 
那么在队尾第一人就立刻可以回答他头上的是白帽,因为他看见了所有的3顶红帽子和4顶黑帽子,能留给他自己戴的只能是白帽子了 

【69】假设排列着100个乒乓球,由两个人轮流拿球装入口袋,能拿到第100个乒乓球的人为胜利者。条件是:每次拿球者至少要拿1个,但最多不能超过5个,问:如果你是最先拿球的人,你该拿几个?以后怎么拿就能保证你能得到第100个乒乓球? 
答案:首先拿4个 别人拿n个你就拿6-n个 
【70】卢姆教授说:“有一次 我目击了两只山羊的一场殊死决斗,结果引出了一个有趣的数学问题。我的一位邻居有一只山羊,重54磅,它已有好几个季度在附近山区称王称霸。后来某个好事 之徒引进了一只新的山羊,比它还要重出3磅。开始时,它们相安无事,彼此和谐相处。可是有一天,较轻的那只山羊站在陡峭的山路顶上,向它的竞争对手猛扑过 去,那对手站在土丘上迎接挑战,而挑战者显然拥有居高临下的优势。不幸的是,由于猛烈碰撞,两只山羊都一命呜呼了。 
现在要讲一讲本题的奇妙之处。对饲养山羊颇有研究,还写过书的乔治.阿伯克龙比说道:“通过反复实验,我发现,动量相当于一个自20英尺高处坠落下来 的30磅重物的一次撞击,正好可以打碎山羊的脑壳,致它死命。”如果他说得不错,那么这两只山羊至少要有多大的逼近速度,才能相互撞破脑壳?你能算出来 吗? 
1英尺(ft)=0.3048米(m) 
1磅(lb)=0.454千克(kg) 
答案:通过实验得到撞破脑壳所需要的机械能是mgh=(30*0.454)*9.8*(20*0.3048)=813.669(J)对于两只山羊撞击瞬间来说,比较重的那只仅仅是站在原地,只有较轻的山羊具有速度,而题目中暗示我们,两只羊仅一次碰撞致死。现在我们只需要求得碰撞瞬间轻山羊的瞬时速度就可以了,根据机械能守恒定律:mgh=1/2(m1v^2)可以得出速度。m1是轻山羊的重量。 
【71】据说有人给酒肆的老板娘出了一个难题:此人明明知道店里只有两个舀酒的勺子,分别能舀7两和11两酒,却硬要老板娘卖给他2两酒。聪明的老板娘毫不含糊,用这两个勺子在酒缸里舀酒,并倒来倒去,居然量出了2两酒,聪明的你能做到吗? 
答案:11,0-->4,7-->4,0-->0,4-->11,4-->8,7-->8,0-->1,7-->1,0-->0,1-->11,1-->5,7-->5,0-->0,5-->11,5-->9,7-->9,0-->2,7,这样就有2斤了。 
【72】已知: 每个飞机只有一个油箱, 飞机之间可以相互加油(注意是相互,没有加油机) 一箱油可供一架飞机绕地球飞半圈,问题:为使至少一架飞机绕地球一圈回到起飞时的飞机场,至少需要出动几架飞机?(所有飞机从同一机场起飞,而且必须安全返回机场,不允许中途降落,中间没有飞机场) 
答案:需要3架飞机(记为A,B,C),A走完全程。如下图,黑色箭头表示飞行方向,红色箭头表示一架给另一架加油,红色数字表示加油量整个油箱容量的比值。 
 
【73】在9个点上画10条直线,要求每条直线上有三个点? 


 
【74】一个岔路口分别通向诚实国和说谎国。来了两个人,已知一个是诚实国的,另一个是说谎国的。诚实国永远说实话,说谎国永远说谎话。现在你要去说谎国,但不知道应该走哪条路,需要问这两个人。请问应该怎么问? 
答案:问:请问你从哪里来? 
回答肯定都是指向诚实国的。 

【75】在一天的24小时之中,时钟的时针、分针和秒针完全重合在一起的时候有几次?都分别是什么时间?你怎样算出来的? 
答案:只有两次 
假设时针的角速度是ω(ω=π/6每小时),则分针的角速度为12ω,秒针的角速度为72ω。分针与时针再次重合的时间为t,则有12ωt-ωt=2π,t=12/11小时,换算成时分秒为1小时5分27.3秒,显然秒针不与时针分针重合,同样可以算出其它10次分针与时针重合时秒针都不能与它们重合。只有在正12点和0点时才会重。 
证明:将时针视为静止,考察分针,秒针对它的相对速度: 
12个小时作为时间单位“1”,“圈/12小时”作为速度单位, 
则分针速度为11,秒针速度为719。 
由于11与719互质,记12小时/(11*719)为时间单位Δ, 
则分针与时针重合当且仅当 t=719kΔ k∈Z 
秒针与时针重合当且仅当 t=11jΔ j∈Z 
而719与11的最小公倍数为11*719,所以若t=0时三针重合,则下一次三针重合 
必然在t=11*719*Δ时,即t=12点。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Colin丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值