集总电路的基本定律——基尔霍夫定律

目录

1.支路、结点、回路的概念

2.基尔霍夫定电流定律(KCL)

★广义KCL

3.基尔霍夫电压定律(KVL)

4.基尔霍夫定律的基础性和适用性

挑战★★★★★


出生于柯尼斯堡(今俄罗斯加里宁格勒)的德国物理学家古斯塔夫·罗伯特·基尔霍夫(Gustav Robert Kirchhoff,1824.03~1887.10)于21岁时(1845年)发表了自己的第一篇论文,提出了求解复杂电路(网络)的两个定律,即基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL),解决了阻碍当时电气技术发展的复杂电路分析难题。有的资料中以基尔霍夫第一定律和基尔霍夫第二定律进行表述,分别指的是KCL和KVL。

基尔霍夫(G. R. Kirchhoff)

1.支路、结点、回路的概念

⑴支路:电路中每个二端元件称为一条支路,串联的元件可视为一条支路

⑵结点:亦称节点,是指支路与支路的连接点。

⑶回路:由支路构成的闭合路径称为回路。

2.基尔霍夫定电流定律(KCL)

定义:在集总电路中,任何时刻,对任一结点,流出该结点的所有支路电流的代数和为零。

KCL是电荷守恒法则运用于集总电路的结果。

将上述定义中的“流出”换成“流入”,KCL的含义不变。

列KCL代数方程时,可规定“流出”或“流入”为正方向,以确定代数式中各项前的正负号,例如第k条支路电流的参考方向与规定的正方向一致,则式中取,否则取

KCL也可以理解为:在一个结点处,进入该结点的电流之和等于离开该结点的电流之和。所以实际使用时,可根据各支路电流的参考方向,以流出等于流入的等式形式列写方程。

广义KCL

KCL不仅适用于电路中的结点,对电路中包含几个结点的闭合面(广义节点)也同样适用。

题1图1所示电路中,,计算

图1

解析:对封闭面S(图2)列KCL方程,有

,得

图2

对标示结点列KCL,得

题2电路如图3所示,试求电流I

图3

解析:标注原电路如图4所示,对结点①列KCL方程,得

图4

对虚线所示闭合面列KCL方程,有

所以

3.基尔霍夫电压定律(KVL)

定义:在集总电路中,任何时刻,沿任一回路的所有支路(或元件)电压(降)的代数和为零。

KVL是能量守恒法则电荷守恒法则共同运用于集总电路的结果。

列KVL代数方程时,可指定回路的绕行方向,以确定代数式中各项前的正负号,各元件电压的参考方向与绕行方向一致,则前面取“+”,否则取“-”。

4.基尔霍夫定律的基础性和适用性

集总电路的电压、电流变量受到两类约束。一类是元件特性造成的自身约束,体现为VCR;另一类是由电路连接(元件的相互连接)所引起的支路电流之间或支路电压之间的约束关系,即拓扑约束(也称几何约束),这正是KCL和KVL所体现的,它们对元件没有要求,只要是集总电路总是成立的。

因此,基尔霍夫定律是集总参数电路的基本定律,KCL和KVL只跟电路的连接方式有关,而与元件的性质无关,无论是线性的还是非线性的,时变的还是非时变的,它们都成立。

题3电路如图5所示,已知一端口网络,其中发出功率为1W,吸收功率为2W,,求的值。

图5

解析:标注电路如图6所示。

图6

吸收功率为2W,则

,求得

(KCL)

,得

根据KVL,

题4求图7所示电路中独立电压源和独立电流源的功率,并分别说明它们是实际发出功率还是实际吸收功率。

图7

解析:根据KCL,标注原电路如图8所示。由KVL,列方程

图8

解得

故2A电流源发出功率为

10V电压源发出功率为

题5如图9所示电路中,已知U=2V,求IR的值。

图9

解析:设流过R的电流为,标注电路如图10所示。

图10

对回路Ⅰ和回路Ⅱ列KVL方程,对结点①列KCL方程

解得

挑战★★★★★

题6计算图11所示电路中各独立电源提供的功率。

图11

解析:标注各支路电流,如图12所示。

图12

由电阻VCR,易得

列结点0和结点①的KCL方程,有

列回路Ⅰ、回路Ⅱ、回路Ⅲ的KVL方程,有

联解以上6个方程,得

2A电流源提供的功率为

10V电压源提供的功率为

(实际吸收功率)。

### KVL 数据库键值存储 #### 定义背景 KVL 数据库是一种基于键值对(Key-Value Pair)的数据管理系统,其核心理念是以键作为访问数据的主要手段。这种设计使得读取和写入操作非常高效,尤其是在大规模分布式环境中[^1]。 #### 创建表的方式 在某些数据库系统中,可以通过 `CREATE TABLE AS SELECT` 的语句动态创建新表并填充数据。例如,在 Hive 中可以使用如下语法创建一个新的键值存储表,并指定特定的存储格式和序列化/反序列化方法: ```sql Hive> CREATE TABLE new_key_value_store ROW FORMAT SERDE "org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe" STORED AS RCFile AS SELECT (key % 1024) new_key, concat(key, value) key_value_pair FROM key_value_store SORT BY new_key, key_value_pair; ``` 此命令不仅定义了一个新的表结构,还通过查询逻辑生成了相应的数据内容。 #### 表修改的影响 对于高性能数据库管理系统的架构而言,优化 B 树中的键值评估是一项常见实践。通过对日志记录功能进行调整,减少了提交和更新过程中的开销,从而显著提升了性能表现。具体来说,这样的改动削减了大约 18% 的总体指令数量[^2]。 #### 日志机制的重要性 ARIES 算法依赖于按顺序编号的日志记录来追踪所有的数据库操作。为了确保可靠性,通常会将产生的日志文件保存到所谓的“稳定存储”介质上——即那些即使发生崩溃或硬件故障也能保持完整的设备之中[^3]。 #### 历史发展 自 1970 年以来,B 树作为一种经典的数据结构被广泛应用于各种类型的数据库当中,无论是传统的关系型还是新兴的非关系型数据库都采纳了它作为索引实现的基础方案之一[^4]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值