线性含源一端口网络的戴维宁(诺顿)等效

目录

1.定理

2.基本方法

3.定理适用性及解题方法探索

综合题★★★★

挑战★★★★★


1.定理

⑴戴维宁定理

任何一个线性含源一端口网络,对外电路来说,可以用一个电压源与电阻的串联组合来等效替代(如图1所示,称为戴维宁等效电路),电压源的电压等于该一端口的开路电压,电阻等于该一端口所有独立源置零后的等效电阻(即端口的输入电阻,如图2所示,为独立源置零后的网络N)。

图1 戴维宁等效

图2 等效电阻

⑵诺顿定理

任何一个线性含源一端口网络,对外电路来说,可以用一个电流源与电阻的并联(或电导)组合来等效替代(如图3所示,称为诺顿等效电路),电流源的电流等于该一端口的短路电流,电阻等于该一端口所有独立源置零后的等效电阻

图3 诺顿等效

2.基本方法

应用戴维宁定理和诺顿定理求解电路的一般方法和步骤是:

⑴求解含源一端口的开路电压或短路电流

⑵求解端口的输入电阻(或输入电导),可采用以下两种方法:

①利用开路电压或与短路电流之比来求,即

②将含源一端口中的所有独立源置零,求其对应的无源一端口的若无源一端口网络含有受控源,则采用外加电源法

⑶根据电源等效原理,求出戴维宁或诺顿等效电路中的任何一个,另一个可通过等效变换得到。

1用诺顿定理求图4所示电路的电流i

图4

解析:先求出除20Ω电阻以外电路(如图5所示,ab左侧电路)的诺顿(或戴维宁)等效电路。

①求短路电流,将ab短路,得

②将电压源置零,求等效内阻(ab左侧),各电阻并联,得

图5

图6

诺顿等效电路如图6所示,则接入20Ω电阻后的电流为

3.定理适用性及解题方法探索

①戴维宁(诺顿)定理适用于求解电路中某一支路电压、电流或功率问题;

②一般在不研究线性含源一端口的内部情况,而只考虑其对外电路的作用时,才将该一端口等效成戴维宁或诺顿电路。

对能够直接求出外特性的一端口,可通过求外特性求得戴维宁(或诺顿)等效参数,即假设端口电压和相应的输出(或输入)电流,求得端口的VCR,即可从其表达式中直接得出等效参数。这种外特性法,有些资料称之为“一步法”。

2求图7所示电路的戴维宁或诺顿等效电路。

图7

解一:①求。如图8所示,由KVL,有

图8

②求,电路中含有受控源,因此用外加电源法。将4V电压源置零,在端口11'外加电压U,端口电流为I,如图9所示,列KVL方程

图9

解得,所以

故,戴维宁等效电路如图10所示。

图10

解二:采用外特性法。参考图11,设端口电压为u,电流为i(也可设参考方向为流入方向),则结点①的电压方程为

图11

解得

根据设定的参考方向,(如果设定端口电流为流入方向,则为)。

综合题★★★★

3图12所示电路中,,问R为何值时,电阻两端的电压为最大?

图12

解析:首先求不包含支路电路的戴维宁等效电路(ab左侧)。

已知两端的电压

解得

挑战★★★★★

4图13所示电路中,N为含独立源的线性电阻网络,R=0时,R=12Ω时,。试确定R为何值时,

图13

解析:设电阻R以外电路的戴维宁等效参数为,依题意,有

解得

响应可以看作是网络N和分别引起的响应的叠加,设

由已知条件,有

解得

时,

又由戴维宁等效,有

### 戴维宁等效电路简介 在电气工程领域,戴维宁定理是一种用于简化复杂线性电路的技术。它允许工程师通过将复杂的网络转换为简单的等效形式来分析特定部分的行为。具体来说,任何由电压、电流以及电阻组成的线性二端网络都可以被替换为一个单一的电压 \( V_{th} \) 和串联的一个阻抗 \( R_{th} \),这就是所谓的 **戴维宁等效电路**。 #### 如何计算戴维宁等效参数? 为了构建戴维宁等效电路,需要确定两个主要参数: 1. **开路电压 (\(V_{th}\))**: 这是在负载断开的情况下测量到的两端之间的电压差。可以通过移除负载并求解剩余电路中的节点电压得到该值[^2]。 2. **等效阻抗 (\(R_{th}\))**: 它表示从外部看进去时整个网络呈现出来的总阻抗特性。通常的做法是将所有独立电置零(理想电压短接,理想电流开路),然后计算输入端处看到的有效电阻或阻抗[^3]。 对于运算放大器应用而言,当存在寄生电容如引用提到的情况(CG)[^1],这些额外元件也会影响最终形成的Thevenin模型的具体数值及其动态性能表现。 ```python import sympy as sp # Define symbols for calculation of Thevenin Equivalent Vs, Rs, RL = sp.symbols('Vs Rs RL') # Example expression representing part of a linear network I = Vs / (Rs + RL) # Solve for open-circuit voltage by setting RL to infinity V_th = I * RL.subs(RL, float('inf')) print(f"Thevenin Voltage: {V_th}") ``` 上述代码片段展示了如何利用PythonSymPy库来进行基本理论推导过程的一部分模拟操作——即寻找\(V_{th}\)的过程之一种方法论实例化展示而已并非针对实际硬件实现细节讨论范围内的脚本编写指南说明文档用途解释而已[^4]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值